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The main theme in this talk is the equation

xℓ − 1

x− 1
= pmq,m ≥ 0, (1)

where ℓ, p, q are given primes such that p ≡ q ≡
1 (mod ℓ).
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(1) is a specialization of a Thue-Mahler equa-

tion:

xℓ − yℓ

x− y
= pmqn,m, n ≥ 0. (2)

One of Evertse’s celebrated results implies that

this equation has at most 2×77(ℓ−1)3 solutions

(Corollary 2 of Evertse, 1984).
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Our background is a problem on perfect num-

bers - integers N satisfying σ(N) = 2N , where

σ(N) denotes the sum of divisors of N as usual.
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Though it is not known whether or not an odd

perfect number exists, many conditions which

must be satisfied by such a number are known.
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Suppose N is an odd perfect number.

Euler: N = pαq
2β1
1 · · · q2βtt for distinct odd primes

p, q1, · · · , qt with p ≡ α ≡ 1 (mod 4).
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The special case: β1 = · · · = βt = β.

We do not know a proof of the nonex-

istence of odd perfect numbers even in

this case!
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Steuerwald (1937): β ̸= 1.

Kanold (1941): (2β+1)4 | N and β ̸= 2. More-

over, if 2β +1 is a power lk of a prime l, then

p ≡ 1 (mod l) (esp. p ̸= l).
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McDaniel (1970), Hagis and McDaniel (1972),

McDaniel and Hagis (1975), Cohen and Williams

(1985), Fletcher, Nielsen and Ochem (2012):

β ≥ 9, β ̸≡ 1 (mod 3), ̸≡ 2 (mod 5), β ̸= 11,14,18,24.
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Conjecture (Hagis and McDaniel, 1972): β1 =

· · · = βt = β does not occur.
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A partial result (Y, 2005):

ω(N) ≤ 4β2 +2β +3, N ≤ 24
4β2+2β+3

.

So that, for each FIXED β, there are only

finitely many OPNs with β1 = · · · = βt = β.

We note that N < 24
ω(N)

for any odd OPN

N(Nielsen, 2003).
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A further improvement (Y, to appear in Colloq.

Math., arXiv:1706.09341):

ω(N) ≤ 2β2 + 8β + 4, N ≤ 24
2β2+8β+4

. More-

over, if β ≥ 29 or β is composite, then ω(N) ≤
2β2 +7β +4, N ≤ 24

2β2+7β+4
.
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This result rests on a diophantine lemma:

If ℓ, p, q are given primes such that ℓ ≥ 19 and

p ≡ q ≡ 1 (mod ℓ), then (1) has at most six

integer solutions (x,m) such that x is a prime

below 24
ℓ2

if ℓ is a prime ≥ 59 and at most five

such solutions if ℓ is a prime ≥ 59.
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with Gauss decompositions of cyclotomic poly-

nomials.

For example:

4(x23 − 1)

x− 1
=(2x11 + x10 − 5x9 − 8x8 − 7x7 − 4x6 +4x5 +7x4 +8x3 +5x2 − x− 2)2

+23(x10 + x9 − x7 − 2x6 − 2x5 − x4 + x2 + x)2.
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(Quoted from Section 357, p. 444 of Gauss,

Disquisitiones Arithmeticae)
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The main result (Y, 2018): If ℓ, p, q are given

primes such that ℓ ≥ 19 and p ≡ q ≡ 1

(mod ℓ), then (1) has at most four posi-

tive integral solutions (x,m). Moreover, if

(1) has five integral solutions (xi,mi) with

m5 > m4 > · · · > m1 ≥ 0, then m1 = 0 and

x2 = xr1 for some integer r ≥ 1.
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This gives:

ω(N) ≤ 2β2 +6β +4, N ≤ 24
2β2+6β+4

.
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Our proof combines:

Gaps for solutions

and

Upper bounds for the sizes of solutions.
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A related result (Y, arXiv:1712.02199).

If D > 0 is a positive integer and p2 > p1 are

given primes, then

x2 +D = 2spk1p
l
2 (3)

has at most 63 integral solutions (x, s, k, l) with

x, k, l ≥ 0 and s ∈ {0,2} (Theorem 2 of Evertse

(1984) gives 3× 714).
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The proof uses Padé approximation technique

introduced by Beukers instead of upper bounds

for the sizes of solutions.

However, this method does not seem to work

for (1) since (1) implies relatively weaker ap-

proximation than (3).
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Φd(x): The d-th cyclotomic polynomial.

(So that σ(ql−1) = (ql − 1)/(q − 1) = Φl(q) for

q, l prime)
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ℓ: a prime ≥ 17 and D = (−1)
ℓ−1
2 l, so that

always D ≡ 1 (mod 4).

K,O: Q(
√
D) and its ring of integers Z[(1 +√

D)/2] respectively.
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h: the class number of O.

ϵ, R = log ϵ: the fundamental unit and the reg-

ulator in K respectively if D > 0. In the case

D < −4, we set ϵ = −1 and R = πi.

(We note that neither D = −3 nor −4 occurs

since we have assumed that ℓ ≥ 17)

We use the overline symbol to express the con-

jugate in K.
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Lemma 1(Zsigmondy, 1882, Kanold, 1941, etc.)� �
Suppose p is a prime and n is a positive in-

teger. If d | (n+1), d > 1 and (p, d) satisfies

neither (p, d) = (2,6) nor (p, d) = (2m − 1,2)

for some integer m, then there exists a prime

q with q ≡ 1 (mod d) and q | Fd(p).� �
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Lemma 2A� �
If x is an integer > 3⌊(ℓ+1)/6⌋, then Φℓ(x) can

be written in the form X2 − DY 2 for some

coprime integers X and Y with 0.3791/x <∣∣∣Y/(X − Y
√
D)

∣∣∣ < 0.6296/x.
� �
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Let p, q be primes ≡ 1 (mod ℓ). Then, we can

factorize [p] = pp̄ and [q] = qq̄ into prime ideals

in O.

Lemma 2B� �
If p, q are primes ≡ 1 (mod ℓ) and Φℓ(x) =

pmq for some integer m, then,[
X + Y

√
D

X − Y
√
D

]
=

(
p̄

p

)±m(
q̄

q

)±1

. (4)

� �
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Lemma 3A� �
Assume that ℓ is a prime ≥ 17. If x2 > x1 > 0

are two multiplicatively independent integers

and Φℓ(xi) = pmiq for i = 1,2, then x2 >

x
⌊(ℓ+1)/6⌋
1 .� �
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The following lemma is a complementary result

of Lemma 3A.

Lemma 3B (Y, 2018)� �
Assume that ℓ is a prime ≥ 17. If x2 > x1 > 0

are multiplicatively dependent integers and

Φℓ(xi) = pmiq for i = 1,2, then m1 = 0 and

x2 = xr1 for some prime r.� �
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Lemma 4� �
If Φℓ(xi) = pmiqj for three integers x3 >

x2 > x1 > 0 with x2 > x
⌊(ℓ+1)/6⌋
1 , then

m3 > 0.397 |R|x1.� �
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Matveev’s result:

Let a1, a2, . . . , an be nonzero algebraic integers

in K such that log a1, . . . , log an are not all zero.

For each j = 1, . . . , n, let Aj ≥ max{2h(aj), log aj},
where h(aj) denotes the logarithmic absolute

height of aj.
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Put

B = max{1, |b1|A1/An, |b2|A2/An, . . . , |bn|},
Ω = A1A2 . . . An,

C0 = 1+ log3− log 2,

C1(n) =
16

n!
en(2n+3)(n+2)

× (4(n+1))n+1(
1

2
en)

× (4.4n+5.5 logn+7)
(5)
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Lemma 5 (Matveev, 2000)� �
Let Λ = b1 log a1+. . .+bn log an. Then, under

the above notations, we have, Λ = 0 or

log |Λ| > −C1(n)(C0 + logB)max
{
1,

n

6

}
Ω.

(6)� �
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We begin by obtaining an upper bound for the

size of a solution of (1).
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Assume that Φℓ(x) = pmq. Then we have the

following upper bounds for m:

i) If h log q > h log p ≥ |R|, then

m <4.56C(3)ℓh2 |R| (log q)

× (log(8C(3)ℓh2 |R|) + log log p).
(7)
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ii) If h log q ≥ |R| ≥ h log p, then

m <4.56C(3)
ℓ

log(2ℓ)
h |R|2 (log q)

× log

(
8C(3)ℓ |R|3

2ℓ

)
.

(8)

iii) If h log p > h log q ≥ |R|, then

m <4.56C(3)ℓh2 |R| (log q)

× (log(4C(3)ℓh2 |R|) + log log q).
(9)
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iv) If h log p ≥ |R| ≥ h log q, then

m < 4.56C(3)ℓh |R|2 log(4C(3)ℓh |R|2). (10)

v) If |R| ≥ h logmax{p, q}, then

m < 4.56C(3)ℓ |R|3
log(8C(3)ℓ |R|3)

log ℓ
. (11)
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Lemma 2 yields that there exist two integers

X,Y such that[
X + Y

√
D

X − Y
√
D

]
=

(
p̄

p

)±m(
q̄j

qj

)±1

, (12)

with 0 <
∣∣∣Y/(X − Y

√
D)

∣∣∣ < 0.6296/x.
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Taking the h-th powers, we have(
X + Y

√
D

X − Y
√
D

)h
= ϵu

(
π̄

π

)±m
(
η̄

η

)±1

̸= 1 (13)

for some integer u.
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Now the logarithmic form

Λ = u log ϵ±m log
(
π̄

π

)
±
(
η̄

η

)

= h log

(
X + Y

√
D

X − Y
√
D

) (14)

satisfies

0 < |Λ| <
2hY

√
D

X − Y
√
D

<
1.2588h

x
. (15)
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We can easily see that h log p ≤ A(π̄/π) ≤ h log p+

|R|, h log q ≤ A(η̄/η) ≤ h log q + |R| and A(ϵ) ≤
|R|.
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The case h log q > h log p > |R|.

In this case, A(π̄/π) < h log p+|R| < 2h log p,A(η̄/η) <

h log q + |R| < 2h log q and B ≤ 2m log p/ log q.
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Moreover,

uA(ϵ)

A(η̄/η)
=

|u log ϵ|
2A(η̄/η)

<
2m |R|
log q

(16)

and

mA(π̄/π)

A(η̄/η)
≤

m(log p+ |R|)
log q

≤
2m log p

log q
. (17)
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Matveev’s theorem gives

logx− log(1.2588h) < − log |Λ|
< C(3)(2h)2

× log

(
2m log p

log q

)
|R| (log p)(log q).

(18)
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Taking it into account that C(3) > 1010, we

may assume that (2m log p)/ log q > 1010. Now,

using h < ℓ1/2 log(4ℓ) (Faisant, 1991), we ob-

tain

2m log p

log q
<4(2C(3) + 1)ℓh2 |R|

× log

(
2m log p

log q

)
(log p)

=:U log

(
2m log p

log q

)
.

(19)
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Since 2C(3) + 1 > 3.6× 1010, we have

m log p

log q
< 0.569U logU

< 4.56C(3)ℓh2 |R| (log p)

× (log(8C(3)ℓh2 |R|) + log log p).

(20)
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We can prove for other cases in similar ways.
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Assume that Φℓ(xi) = pmiq has five solutions

0 < m1 < m2 < m3 < m4 < m5.
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It is clear that x1 ≥ max{q1/ℓ,2}.

Since we have assumed that m1 > 0, Lemma

3A yields that x3 ≥ max{q,2ℓ}⌊(ℓ+1)/6⌋2/ℓ.
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Now Lemma 4 yields that

m5 > 0.397πx3

> 0.397πmax

q⌊(ℓ+1)/6⌋2
ℓ ,2

⌊
(ℓ+1)

6

⌋2
:= M.

(21)
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The case ℓ ≥ 47.

With the aid of the upper bound |R| < ℓ1/2 log(4ℓ)

(Faisant, 1991), (7)-(11) implies that m5 < M ,

which contradicts to (21).

Hence, if ℓ ≥ 47, then Φℓ(x) = pmq with m > 0

has at most four solutions.
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The case ℓ = 43.

We must have x1 ≥ 3 since 243 − 1 = 431 ×
9719 × 2099863 has three distinct prime fac-

tors.

Thus we must have m5 > 0.397πmax{q49/43,349}.

51



However, (7)-(11) would yield that, if q < 343,

then m < 4.7 × 1016 < 0.397π × 349 and, if

q > 343, then m < 2.8 × 1013(log q)(log log q +

32) < 0.397πq49/43.

Hence, Φℓ(x) = pmq with m > 0 can never have

five solutions.
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The case ℓ ≤ 41, x1: large.

If x1 ≥ 3(ℓ = 37,41),5(ℓ = 29,31), 13(ℓ =

23),68(ℓ = 19), 63(ℓ = 17), then m5 exceeds

the upper bounds given in (7)-(11).

Hence, m5 cannot exist.

53



The case ℓ ≤ 41, x1: small.

We checked all x1 such that (xℓ1−1)/(x1−1) =

pmq with p ≡ q ≡ 1 (mod ℓ) and m > 0.

In all cases, we have m < 1.3× 1017, while p ≥
47, x2 > p4 > 106 and m5 > x3 > x42 > 1024.

Hence, m5 cannot exist.

54



For example, in the case ℓ = 23 (in this case,

we have h = 3 and R = πi), if x1 ≥ 13, then

we must have m5 > 0.397πmax{q16/23,1316},
which exceeds the upper bounds given in (7)-

(11).
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If x1 < 13, then we must have x1 = 2,3,5;

(1023−1)/9 is prime and (x23−1)/(x−1) with

x = 4,6,7,8,9,11 or 12 has more than two

distinct prime factors.
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If x1 = 2,3 or 5, then p, q ≤ 332207361361

and m < 1.3 × 1017. But, in any case, we

have confirmed that x2 > p4 > 106. Hence, we

must have x3 > x42 > 1024 and m5 > x3 > 1024,

which is a contradiction.
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A problem: determine all ℓ, p, q such that (1)

has ≥ 3 solutions.

(Finiteness follows from the abc-conjecture if

we limit ℓ ≥ 5)
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