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Introduction

The main theme in this talk is the Machin-type
formula

n 1 T
Y yjarctan — = — (1)
= T; 4
1=1 v
with integers z1,xo,...,Tn,Y1,Y2,...,Yn and r &

0.



The Machin's formula (Machin, 1706)

1 1 s
4 arctan — — arctan —— = — (2)
5 239 4

is well known and have been used to calculate
approximate values of .



Analogous formulae:

1 1 s
arctan — 4 arctan— = —,
2 3 4

1 1 TT
2arctan — — arctan — = —
2 7

and

1 1 T
2 arctan — + arctan — = —
3 7

(3)

(4)

(5)



(3)-(5) were attributed to Euler, Hutton and
Hermann, respectively. But according to Twed-
dle, 1991, these formulae also seem to have
been found by Machin.



Several three-term formulae also have been known
(Simson, 1723 and Gauss, 1863 respectively):

1 1 1 s
8arctan — — arctan —— — 4 arctan —— = —,
10 239 515 4
1 1 7
12 arctan — + 8 arctan — — 5arctan —— = —.
18 57 239 4



Stgrmer, 1895: There exist only four two-
terms formulae (2)-(5).

Stgrmer, 1896 gave a general criteria and 102
three-term formulae.



Stgrmer’s criteria (revised)

A necessary and sufficient condition for given
integers xzq1,xo,...,xn, > 1 to have a Machin-
type formula (1) is as follows:



3s;;(1 <i<n,1<j<n-1): integers,

dni,mo,...,n,—1. Gaussian integers s.t.
_ +s5,
Al-m
z; —v—1 j=1 LN

for:=1,2,...,n.



Putting m; = n;n;, this condition can be refor-
mulated as follows:

ds; (4,5 = 1,2,...,n). nonnegative integers
with 0 < s;,, <1 s.t.
22 4+ 1 = 2%inm P tml2 .oy i (7)

for 1 <i<n and z; = £z; (mod my) for two
indices i,j with 2 + 1 = sz-—l— 1 =0 (mod my).
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Stgrmer, 1896 questioned:

Are there infinitely many three-term formulae

3
1
> y;arctan — = T,r %~ 07 (8)

i=1 L
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The main result (Y,): There exist only
finitely many integers x;,y;(7« = 1,2,3) and
r with x1,z0,23 > 1,{x1,z2,23} # {2,3,7}
and r #= 0 satisfying (8).
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Furthermore,

I If 22+ 1 > mp for i = 1,2,3, then my <
mo < 1.943109-1048, 2, < exp(1.643-1014)
and |y;| < 1.092 - 1024,

II. If 22 + 1 < mp for some 4, then mj <
1.78731-107%, mo < exp(1519318.88) < 6.4 X
10059831 4. < exp(2.367 - 1023) and |y;| <
1.051 - 1038,
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The key tool: lower bound for linear forms in
three logarithms.

T his gives upper bounds for exponents k;’'s and
[;'’s in terms of mq, mo,

Note: Depending on m1,mo, these upper bounds
themselves do not give the desired finiteness.
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However, provided that r #= 0, we can prove
the desired finiteness in the first case.

In the second case, we use a lower bound for
a quantity of the form

1 T
yarctan — — —,
T 2

which gives a linear form of two logarithms.
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Notation and
Preliminary lemmas

For any Gaussian integer n, we have an asso-
ciate n’ of n such that —w/4 < argn’ < n/4 and
therefore —n/2 < argn’/n < ©/2.
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Decompose m; = n;n; in Gaussian integers so
that —w/4 < argn’ < n/4 and let & = n;/7;.

Thus, —7w/2 <argé < w/2.
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For N composed of prime factors =1 (mod 4),

—_—

log N :=log N if N > 13 and log 5 := 4 arctan 3,

log N := max{log N, 'Q?géf\é + max 4 arg %},

~v(N) = Ifng/Iog N,5(N) = I/ovgN/Iog N, where
N = nnm.
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(1) is called degenerate if

1 r'

Y yjarctan — = — (9)
ieS T 4
for some proper subset S of {1,2,...,n}, and

integers yg(i € S) and " which may be zero but
not all zero
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Lemma 1
In the three-term case, a degenerate cases

occurs only if {zx1,z0,23} ={2,3,7}.

This lemma follows from Stgrmer's result for
two-terms formulas.
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~ Lemma 2 ~
The equation z2+41 = 2¢y” with z > 0,n > 2
has only one integral solution (x,e,y,n) =
\(239, 1,13,4).

/

e = 0: M. Lebesgue, 1850.

n odd, e = 1: Stgrmer, 1897.

n = 4: Ljunggren, 1942 (easier proofs by Wol-
skill, 1989 and Steiner and Tzanakis, 1991).
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The key tool

A lower bound for linear forms of three log-
arithms
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Results in Mignotte’s a kit on linear forms in
three logarithms are rather technical but still
worthful to use for the purpose of improving
our upper bounds.
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a1, an,a3: Gaussian rationals with a; = 1, || =
1,

«;'S are multiplicatively independent or

two of these numbers are multiplicatively inde-
pendent and the third one is a root of unity,

l.e. —1 or =/—1.

24



bi1,b>,b3: three coprime positive rational inte-
gers and

N =bylogar — by logay — b3zl0g as, (10)

where the logarithm of each «; can be arbitrar-
iIly determined as long as

by |log as| = by [log aq| + b3 |logaz| £ |A]. (11)
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d1 = gcd(by,b),do = gcd(bo, b3),bp = diby =
dsbLs.

w; = |log a;| = |arg oy| for each i = 1,2, 3,

ai,a2,a3: real numbers such that
a; > max{4, 5.296w; + Qh(ai)},

Q= max{a1a2a3, 100}.
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Furthermore, put

/ / /! /!
Y = (b—1+ b2> <b3 +b—2> (12)

ap a1/ \az a3
and log B = max{0.882 + log ¥/, 10}.
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Then, either one of the following holds.

A. The estimate

log |A| > —790.952log? B (13)
holds.
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B. There exist two nonzero rational integers
ro and sg such that rgbo = sgbyp with |7’O| <
5.61asl0gl/3 B and |sg| < 5.61aq logl/3 B.
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C. There exist four rational integers rq,s1,%t1
and to with r1s7 #= 0 such that

(t1b1 + 7r1b3)s1 = r1boto, (14)
gcd(ry,t1) = gcd(sy,tp) =1

and

(Is1tal,[rital, r1s1])

< 5.615109Y/3 B(aq, as, a3),
where 6 = gcd(rq,s1). Moreover, when t1 = 0

we can take r;y = 1 and then to = 0 we can
take s; = 1.

(15)
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This result is nonsymmetric for three logarithms
and, in order to make each b; positive, we
should arrange the order of logarithms. Thus,
the application of this result requires a fair
amount of computations with many branches
of cases.

We note that may assume that log as = 7y/—1/2
or logaz = w/—1/2 if one of «;'s is a root of
unity.
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Now we shall obtain upper bounds for the size
of a solution of

2 +1= 2°m7tms2 (16)

for given integers mq, mo.
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If eg =0, then e € {1,2,4} by Lemma 2.
Hence, we may assume that e; = 0 and we can
put eologmo = kejlogmq. Thus, ejlogmq +

eslogmos = (1 4+ k)eq logmy.

Moreover, put 8 = w + 2max{1l,x}.
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We present only the case C with logapy = wv/—1/2,
which eventually gives the worst estimate for
our main result:

(1 —+ /ﬁ:)el log m1q
<60064g(m1, ms) 10ogmy 1092 m»

loglogmq + 3loglog m2>8/3
2 Y,

« (Iog Cat+
(17)
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where
2.648m(logmq + l0g mg)
Iog m1 10g mo
g(m1,mp) =f(my,m2)y(m1)d(m>)
and

f(ml7m2) =1+

1 1
Ca1 < 13262g(m1, .
41 g(m1,m2) <5.2967r *iog m1>
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Let

v+ V-1 rm
N =1lo = +e; lO + eslO + —.
g — 1 e1 109 &1 = exlogéo >
(18)
Provided that m3*m5? > 1029,
log IN| < —logz
(14 k)eqlogmq (19)

< — 109,
5 +
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In the case logapy = 7wi/2, we can set:
i = &

b, = ‘ejz.| /gcd(eq,ep,r) fori = 1,3, where (j1,j3) =
(1,2) or (2,1).

a; = logm;, + 5.29670,;,(i = 1,3) and ap =
2.6487.
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Reduction into two logarithms.

We put r1 = drg,s1 = dsg, which immediately
yields that gcd(rg,sg) = 1.

We can see that rg | b1 and sg | bo.
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Now put by = rgui,bo = sgup. Dividing (14)
by rgsg, we have

tiu1 + touo + 0b3z = 0. (20)

39



Now we obtain

ON = uop lOg ag — uy l0g a7, (21)
where

s1 t r1 —t
ap = astag, a7 = arag . (22)
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Moreover,
sot1| <5.61aq logl/3 B,
|7“0t2 <b.6la-o Iogl/3 B, (23)
|6rgsg| <5.61as3 Iogl/3 B.
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We take
a; — MaX {h(az)7 ||Og Q‘z|} (7’ — 67 7)7

:|u1| 4+ 4 bo

b
[us| < b |
ag a7 ~ |solae = |so|az

b//

Then, Corollaire 1 of (Laurent, Mignotte and
Nesterenko, 1995) gives

log |6A| > —30.9 max{log?b”’, 441} agay. (24)
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After some amount of calculation, we have

(1 4+ a)eilogmq
2

O
log mo

< 6630g(mq1,mo) logm1 I092 mo

(25)
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where b, = Bei/logmo and c; denotes some
constant such that

1 1o, 1
logmq \logmy,  2.648~w
C1
<
(14 a)? (26)

(ot Lt 2
logmy, 5.2967)
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(25) gives (17).

We can prove for other cases in similar ways.
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Outline of the proof
of the main result
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Assume

3 1 T
Y wyjarctan — = —
i=1 T 4

with x1,xzo,23 > 1,7 = 0 and let

:1322 + 1= QUimliimlzi.

(27)

(28)
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We note that

y1 = tkolz £ k3lo,

yo = tk3ly £+ k1l3,

y3z = tkilo = koly

with appropriate choices of signs.
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Let K = maxk; and L = maxl;.

We have two cases: I. 2%+ 1 > mp and IL
2 4+ 1 < mo.
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Case 1.
In this case, z; > /mo —1 for: =1,2, 3.

We may assume that a) ljlxlz > 0,x25,23 >
mo/2 Or b) I1 =0,l5l3 > 0,23 > mo /2.
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From (27) with r # 0,

D
|y1|+|y2|+ y3| S

s
vmo — 1 mo 4

Since |y1| < kolz 4+ k3lp < 2K L and so on, we
have mo < (4(24+ 1078)KL/7)? < 6.49(KL)2.
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Combining with our upper bounds for expo-
nents, we have

m1 < mo < 1.943109 - 1048,

ly;| < 2K L < 1.092 - 1024

and logzxz; < k;logmqi+;lo0gmo < 2K L l0ogmo <
1.643.1014, that is, z; < exp(1.643-101%4). This
shows the Theorem in Case L.
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Case 1I.

We may assume that Iy = 0,27+ 1 < ma, lol3 >
0,z3 > mop/2.

Now we clearly have yo = *li3zkq,yz3 = =xlrky
and therefore

rT _ (4107 8)k1(12+13>
— — arctan—
4 Ut T 1/2

(29)
with |yq| < kolsz + I3k < 2K L.
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Let

x1++v—1
N1 =2y l0 — —1. 30
1= 2y1l0g = Ty (30)

Then (27) gives
4(1 41078k, L
1/2 ’
ms

while Théoreme 3 of (LMN, 1995) gives that

IA1] < (31)

—log |A1| < 8.87aH?, (32)
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where

a = Mmada

H

= MmMaxX

S
{

20,10.98log m1 +

17,2.38 + log (

log m1

2
2y1

b

+ose))
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If mo > el?® then (32) gives

logmy < 155.77(10.98~(m1)+0.58) logm1 log log m1.

(33)
Recalling (29), we have
2KL ki L
vmi—1 4 /mo—1 (34)

1—10"9
>7T( )
4

56



Combining this with (33) and our upper bounds
for exponents, we have

mq < 2.9526 - 107°,

mo < exp(1639526.95) < 3.2 x 10712037

logz; = t;logmy + u;logms < 2.6475 - 1023,
that is, x; < exp(2.6475 - 1023),

and y; < 2TU < 1.281 -1038. This completes
the proof of the Theorem.
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Background

(7) can be seen as a special case of the gen-
eralized Ramanujan-Nagell equation

22 + Az + B = plp? - - plr, (35)

where A and B are given integers with A2 —
4B # 0 and pq1,po,...,pn are given primes.
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Evertse, 1984: (35) has at most 3. 74716 so-
lutions.

In the case n = 2, Y., 2018 reduced Evertse’s
bound 3- 714 to 63.
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Our result does not give an upper bound for
numbers of solutions

22 + 1 = 2%phph (36)

since the case r = 0 is not considered.
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Indeed, Stgrmer, 1896 implicitly pointed out
that, if 2 + 1 = ay, then

1
— arctan
az — I az +a—x

1
az(z+1)—2z+ 1Dz +vy

arctan

(37)
= arctan

61



Stgrmer, 1897: (36) has at most one solu-
tion with each fixed combination of parities
of s;, k;,l; with zero and nonzero-even distin-
guished.
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Although there exist 18 combinations
(0]1,0[1]2,0]1]2),

all-even combinations can clearly be excluded
and therefore (36) has at most 14 solutions
totally.
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Stgrmer, 1896 also questioned: Is there any
further three-term formula? Up to now, the
only known other nontrivial (i.e. not derived
from (3)-(5)) three-term formulae are

1 1 1 37

5arctan - + 2arctan — + arctan ==
2 53 4443 4
1 1 1 ™

5arctan - — 2arctan — — arctan =_,
3 53 4443 2
1 1 1 ™
5arctan— 4+ 4 arctan — + 2 arctan =
r 53 4443 4
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Carl Stgrmer, Sur |'application de la théorie
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