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The main theme in this talk is the Machin-type

formula
n∑

i=1

yi arctan
1

xi
=

rπ

4
(1)

with integers x1, x2, . . . , xn, y1, y2, . . . , yn and r ̸=
0.
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The Machin’s formula (Machin, 1706)

4 arctan
1

5
− arctan

1

239
=

π

4
(2)

is well known and have been used to calculate

approximate values of π.
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Analogous formulae:

arctan
1

2
+ arctan

1

3
=

π

4
, (3)

2 arctan
1

2
− arctan

1

7
=

π

4
(4)

and

2arctan
1

3
+ arctan

1

7
=

π

4
. (5)
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(3)-(5) were attributed to Euler, Hutton and

Hermann, respectively. But according to Twed-

dle, 1991, these formulae also seem to have

been found by Machin.
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Several three-term formulae also have been known

(Simson, 1723 and Gauss, 1863 respectively):

8 arctan
1

10
− arctan

1

239
− 4arctan

1

515
=

π

4
,

12arctan
1

18
+ 8arctan

1

57
− 5arctan

1

239
=

π

4
.
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Størmer, 1895: There exist only four two-

terms formulae (2)-(5).

Størmer, 1896 gave a general criteria and 102

three-term formulae.
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Størmer’s criteria (revised)

A necessary and sufficient condition for given

integers x1, x2, . . . , xn > 1 to have a Machin-

type formula (1) is as follows:
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∃sij(1 ≤ i ≤ n,1 ≤ j ≤ n− 1): integers,

∃η1, η2, . . . , ηn−1: Gaussian integers s.t.[
xi +

√
−1

xi −
√
−1

]
=

n−1∏
j=1

[
ηj

η̄j

]±si,j

(6)

for i = 1,2, . . . , n.
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Putting mi = ηiη̄i, this condition can be refor-

mulated as follows:

∃si,j(i, j = 1,2, . . . , n): nonnegative integers

with 0 ≤ si,n ≤ 1 s.t.

x2i +1 = 2si,nm
si,1
1 m

si,2
2 · · ·msi,n−1

n−1 (7)

for 1 ≤ i ≤ n and xi ≡ ±xj (mod mk) for two

indices i, j with x2i +1 ≡ x2j +1 ≡ 0 (mod mk).
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Størmer, 1896 questioned:

Are there infinitely many three-term formulae

3∑
i=1

yi arctan
1

xi
=

rπ

4
, r ̸= 0? (8)
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The main result (Y,): There exist only

finitely many integers xi, yi(i = 1,2,3) and

r with x1, x2, x3 > 1, {x1, x2, x3} ̸= {2,3,7}
and r ̸= 0 satisfying (8).

12



Furthermore,

I. If x2i + 1 ≥ m2 for i = 1,2,3, then m1 <

m2 < 1.943109 ·1048, xi < exp(1.643 ·1014)
and |yi| < 1.092 · 1024.

II. If x2i + 1 < m2 for some i, then m1 <

1.78731·1076,m2 < exp(1519318.88) < 6.4×
10659831, xi < exp(2.367 · 1023) and |yi| <
1.051 · 1038.
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The key tool: lower bound for linear forms in

three logarithms.

This gives upper bounds for exponents ki’s and

li’s in terms of m1,m2,

Note: Depending on m1,m2, these upper bounds

themselves do not give the desired finiteness.
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However, provided that r ̸= 0, we can prove

the desired finiteness in the first case.

In the second case, we use a lower bound for

a quantity of the form

y arctan
1

x
−

rπ

2
,

which gives a linear form of two logarithms.
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For any Gaussian integer η, we have an asso-

ciate η′ of η such that −π/4 < arg η′ < π/4 and

therefore −π/2 < arg η′/η̄′ < π/2.
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Decompose mi = ηiη̄i in Gaussian integers so

that −π/4 < arg η′ < π/4 and let ξi = ηi/η̄i.

Thus, −π/2 < arg ξ < π/2.
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For N composed of prime factors ≡ 1 (mod 4),

l̂ogN := logN if N ≥ 13 and l̂og5 := 4arctan 1
2,

l̃ogN := max{logN, logN
2.648 +max4arg η

η̄},

γ(N) = l̂ogN/ logN, δ(N) = l̃ogN/ logN , where

N = ηη̄.
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(1) is called degenerate if

∑
i∈S

y′i arctan
1

xi
=

r′π

4
(9)

for some proper subset S of {1,2, . . . , n}, and

integers y′i(i ∈ S) and r′ which may be zero but

not all zero
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Lemma 1� �
In the three-term case, a degenerate cases

occurs only if {x1, x2, x3} = {2,3,7}.� �

This lemma follows from Størmer’s result for

two-terms formulas.
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Lemma 2� �
The equation x2+1 = 2eyn with x > 0, n > 2

has only one integral solution (x, e, y, n) =

(239,1,13,4).� �

e = 0: M. Lebesgue, 1850.

n odd, e = 1: Størmer, 1897.

n = 4: Ljunggren, 1942 (easier proofs by Wol-

skill, 1989 and Steiner and Tzanakis, 1991).
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The key tool� �
A lower bound for linear forms of three log-

arithms� �
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Results in Mignotte’s a kit on linear forms in

three logarithms are rather technical but still

worthful to use for the purpose of improving

our upper bounds.

23



α1, α2, α3: Gaussian rationals with αi ̸= 1, |αi| =
1,

αi’s are multiplicatively independent or

two of these numbers are multiplicatively inde-

pendent and the third one is a root of unity,

i.e. −1 or ±
√
−1.
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b1, b2, b3: three coprime positive rational inte-

gers and

Λ = b2 logα2 − b1 logα1 − b3 logα3, (10)

where the logarithm of each αi can be arbitrar-

ily determined as long as

b2 |logα2| = b1 |logα1|+ b3 |logα3| ± |Λ| . (11)
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d1 = gcd(b1, b2), d2 = gcd(b2, b3), b2 = d1b
′
2 =

d3b
′′
2.

wi = |logαi| = |argαi| for each i = 1,2,3,

a1, a2, a3: real numbers such that

ai ≥ max{4,5.296wi +2h(αi)},

Ω = max{a1a2a3,100}.
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Furthermore, put

b′ =

(
b′1
a2

+
b′2
a1

)(
b′′3
a2

+
b′′2
a3

)
(12)

and logB = max{0.882+ log b′,10}.
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Then, either one of the following holds.

A. The estimate

log |Λ| > −790.95Ω log2B (13)

holds.
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B. There exist two nonzero rational integers

r0 and s0 such that r0b2 = s0b1 with |r0| ≤
5.61a2 log

1/3B and |s0| ≤ 5.61a1 log
1/3B.
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C. There exist four rational integers r1, s1, t1
and t2 with r1s1 ̸= 0 such that

(t1b1 + r1b3)s1 = r1b2t2,

gcd(r1, t1) = gcd(s1, t2) = 1
(14)

and

(|s1t1| , |r1t2| , |r1s1|)
≤ 5.61δ log1/3B(a1, a2, a3),

(15)

where δ = gcd(r1, s1). Moreover, when t1 = 0

we can take r1 = 1 and then t2 = 0 we can

take s1 = 1.
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This result is nonsymmetric for three logarithms

and, in order to make each bi positive, we

should arrange the order of logarithms. Thus,

the application of this result requires a fair

amount of computations with many branches

of cases.

We note that may assume that logα2 = π
√
−1/2

or logα3 = π
√
−1/2 if one of αi’s is a root of

unity.
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Now we shall obtain upper bounds for the size

of a solution of

x2 +1 = 2eme1
1 m

e2
2 (16)

for given integers m1,m2.
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If e1 = 0, then e2 ∈ {1,2,4} by Lemma 2.

Hence, we may assume that e1 ̸= 0 and we can

put e2 logm2 = κe1 logm1. Thus, e1 logm1 +

e2 logm2 = (1+ κ)e1 logm1.

Moreover, put β = π(1+κ)
2 +2max{1, κ}.
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We present only the case C with logα2 = π
√
−1/2,

which eventually gives the worst estimate for

our main result:

(1 + κ)e1 logm1

<60064g(m1,m2) logm1 log
2m2

×
(
logC4,1 +

log logm1 +3 log logm2

2

)8/3
,

(17)
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where

f(m1,m2) =1+
2.648π(l̂ogm1 + logm2)

l̂ogm1 logm2
,

g(m1,m2) =f(m1,m2)γ(m1)δ(m2)

and

C4,1 < 13262g(m1,m2)

(
1

5.296π
+

1

logm1

)
.
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Let

Λ = log
x+

√
−1

x−
√
−1

= ±e1 log ξ1 ± e2 log ξ2 ±
rπ

2
.

(18)

Provided that m
e1
1 m

e2
2 > 1020,

log |Λ| <− logx

<−
(1 + κ)e1 logm1

2
+ 10−9.

(19)
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In the case logα2 = πi/2, we can set:

αi = ξji,

bi =
∣∣∣eji∣∣∣ /gcd(e1, e2, r) for i = 1,3, where (j1, j3) =

(1,2) or (2,1).

ai = l̂ogmji + 5.296πθji(i = 1,3) and a2 =

2.648π.
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Reduction into two logarithms.

We put r1 = δr0, s1 = δs0, which immediately

yields that gcd(r0, s0) = 1.

We can see that r0 | b1 and s0 | b2.
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Now put b1 = r0u1, b2 = s0u2. Dividing (14)

by r0s0, we have

t1u1 + t2u2 + δb3 = 0. (20)
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Now we obtain

δΛ = u2 logα6 − u1 logα7, (21)

where

α6 = α
s1
2 α

t2
3 , α7 = α

r1
1 α

−t1
3 . (22)
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Moreover,

|s0t1| ≤5.61a1 log
1/3B,

|r0t2| ≤5.61a2 log
1/3B,

|δr0s0| ≤5.61a3 log
1/3B.

(23)
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We take

ai =max {h(αi), |logαi|} (i = 6,7),

b′′ =
|u1|
a6

+
|u2|
a7

≤
b1

|s0| a6
+

b2
|s0| a7

.

Then, Corollaire 1 of (Laurent, Mignotte and

Nesterenko, 1995) gives

log |δΛ| ≥ −30.9max{log2 b′′,441}a6a7. (24)
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After some amount of calculation, we have

(1 + α)e1 logm1

2
< 6630g(m1,m2) logm1 log

2m2

× log2/3
(
c
1/2
1 e1

√
logm1

logm2

)
log2 b′′0,

(25)
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where b′′0 = βe1/ logm2 and c1 denotes some

constant such that

1

logm1

(
1

logm1
+

1

2.648π

)
<

c1
(1 + α)2

<

(
1

logm1
+

1

5.296π

)2
.

(26)
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(25) gives (17).

We can prove for other cases in similar ways.
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Assume
3∑

i=1

yi arctan
1

xi
=

rπ

4
(27)

with x1, x2, x3 > 1, r ̸= 0 and let

x2i +1 = 2vimki
1 m

li
2. (28)
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We note that

y1 = ±k2l3 ± k3l2,

y2 = ±k3l1 ± k1l3,

y3 = ±k1l2 ± k2l1
with appropriate choices of signs.
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Let K = max ki and L = max li.

We have two cases: I. x21 + 1 ≥ m2 and II.

x21 +1 < m2.
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Case I.

In this case, xi ≥
√
m2 − 1 for i = 1,2,3.

We may assume that a) l1l2l3 > 0, x2, x3 >

m2/2 or b) l1 = 0, l2l3 > 0, x3 > m2/2.
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From (27) with r ̸= 0,

|y1|+ |y2|√
m2 − 1

+
2 |y3|
m2

>
π

4
.

Since |y1| ≤ k2l3 + k3l2 ≤ 2KL and so on, we

have m2 < (4(2 + 10−8)KL/π)2 < 6.49(KL)2.
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Combining with our upper bounds for expo-

nents, we have

m1 < m2 < 1.943109 · 1048,
|yi| < 2KL < 1.092 · 1024

and logxi < ki logm1+li logm2 < 2KL logm2 <

1.643·1014, that is, xi < exp(1.643·1014). This

shows the Theorem in Case I.
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Case II.

We may assume that l1 = 0, x21+1 < m2, l2l3 >

0, x3 > m2/2.

Now we clearly have y2 = ±l3k1, y3 = ±l2k1
and therefore∣∣∣∣∣rπ4 − y1 arctan

1

x1

∣∣∣∣∣ < (1 + 10−8)k1(l2 + l3)

m
1/2
2

,

(29)

with |y1| ≤ k2l3 + l3k2 < 2KL.
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Let

Λ1 = 2y1 log
x1 +

√
−1

x1 −
√
−1

− rπ
√
−1. (30)

Then (27) gives

|Λ1| <
4(1 + 10−8)k1L

m
1/2
2

, (31)

while Théorème 3 of (LMN, 1995) gives that

− log |Λ1| < 8.87aH2, (32)
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where

a =max
{
20,10.98l̂ogm1 +

logm1

2

}
,

H =max
{
17,2.38+ log

(
r

2a
+

2y1
68.9

)}
.
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If m2 > e175, then (32) gives

logm2 < 155.77(10.98γ(m1)+0.58) logm1 log logm1.

(33)

Recalling (29), we have

2KL
√
m1 − 1

>
π

4
−

2k1L√
m2 − 1

>
π(1− 10−8)

4
.

(34)
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Combining this with (33) and our upper bounds

for exponents, we have

m1 < 2.9526 · 1076,
m2 < exp(1639526.95) < 3.2× 10712037,

logxi = ti logm1 + ui logm2 < 2.6475 · 1023,
that is, xi < exp(2.6475 · 1023),
and yi ≤ 2TU < 1.281 · 1038. This completes

the proof of the Theorem.
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(7) can be seen as a special case of the gen-

eralized Ramanujan-Nagell equation

x2 +Ax+B = p
e1
1 p

e2
2 · · · penn , (35)

where A and B are given integers with A2 −
4B ̸= 0 and p1, p2, . . . , pn are given primes.
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Evertse, 1984: (35) has at most 3 · 74n+6 so-

lutions.

In the case n = 2, Y., 2018 reduced Evertse’s

bound 3 · 714 to 63.
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Our result does not give an upper bound for

numbers of solutions

x2 +1 = 2spk1p
l
2 (36)

since the case r = 0 is not considered.
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Indeed, Størmer, 1896 implicitly pointed out

that, if x2 +1 = ay, then

arctan
1

az − x
− arctan

1

az + a− x

= arctan
1

az(z +1)− (2z +1)x+ y
.

(37)
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Størmer, 1897: (36) has at most one solu-

tion with each fixed combination of parities

of si, ki, li with zero and nonzero-even distin-

guished.
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Although there exist 18 combinations

(0 | 1,0 | 1 | 2,0 | 1 | 2),

all-even combinations can clearly be excluded

and therefore (36) has at most 14 solutions

totally.
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Størmer, 1896 also questioned: Is there any

further three-term formula? Up to now, the

only known other nontrivial (i.e. not derived

from (3)-(5)) three-term formulae are

5 arctan
1

2
+ 2arctan

1

53
+ arctan

1

4443
=

3π

4
,

5arctan
1

3
− 2arctan

1

53
− arctan

1

4443
=

π

2
,

5arctan
1

7
+ 4arctan

1

53
+ 2arctan

1

4443
=

π

4
.
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Maurice Mignotte, A kit on linear forms in

three logarithms, avilable from Y. Bugeaud’s

web page:

http://irma.math.unistra.fr/ bugeaud/travaux/kit.pdf

Carl Størmer, Sur l’application de la théorie

des nombres entiers complexes a la solution en

nombres rationnels x1, x2, . . . , xn, c1, c2, . . . , cn, k

de l’équation: c1arc tgx1 + c2arc tgx2 + · · · +
cnarc tgxn = kπ4, Arch. Math. Naturv. 19

(1896), Nr. 3, 96 pages.
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Michael Roby Wetherfield and Hwang Chien-

lih, Computing π, lists of Machin-type (inverse

cotangent) identities for π/4,

http://www.machination.eclipse.co.uk/index.html
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