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Introduction

The Machin’s formula (Machin, 1706)

1 1
4 - —_— = — ]
arctan z arctan 539 — 2 M
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Introduction

The Machin’s formula (Machin, 1706)

1 1
4 arctan 5~ arctan 239 = % M

is well known and have been used to calculate approximate
values of .
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Analogous formulae

1 1 T
t tan — — 2
arcan2+arcan3 1 ()
2 arct tan s = T 3)
arcan2 arctan =71
and " "
T
2 arctan — tan = = —. 4
arcan3+arcan7 1 (@)
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Analogous formulae

1 1 T
t tan — — 2
arcan2+arcan3 1 ()
1
2arctan — — arctan =

s
=7 (®))
and

1 1
2 arctan 3 + arctan - =71 (@)
(2)-(4) were attributed to Euler, Hutton and Hermann

respectively. But according to Tweddle, 1991, these formulae
also seem to have been found by Machin.
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Several three-term formulae also have been known. For
example,
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Several three-term formulae also have been known. For
example,

8 arctan tan - darctan = T
arctan — — arctan —— — 4arctan —— = —
10 239 515 4’
12 arctan - + 8 arctan — — 5 arct
arctan — arctan — — o arctan = —.
18 57 239 4

by Simson in 1723 and by Gauss in 1863 respectively (see
Tweddle, 1991).
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Two-term Machin-type formulae (Stgrmer, 1895)
There exist only four two-term formulae (1)-(4).
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A problem
For given n > 3, determine all n-term Machin-type formulae
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A problem
For given n > 3, determine all n-term Machin-type formulae

1 1 1
kq arctan — + kg arctan — + - - - + k,, arctan — = — )
1 z2 B 4

with k1, ..., kn, 21, ..., z,, GQNd r integers with x4, ..., 2, > 2 and

r #0.
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A problem
For given n > 3, determine all n-term Machin-type formulae

1 1 1
k1 arctan — + kg arctan — + - - - + kj, arctan — = — ®)
1 z2 B 4

with k1, ..., kn, 21, ..., z,, GQNd r integers with x4, ..., 2, > 2 and

r # 0.

This problem is unsolved even for n = 3.
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Starmer, 1896 gave a general criteria and 102 three-term
formulae.
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Stgrmer, 1896 gave a general criteria and 102 three-term
formulae.

Starmer’s criteria (revised)

A necessary and sufficient condition for given integers
z1,To,...,Tn > 2 10 have a Machin-type formula (5) is as follows:
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Stgrmer, 1896 gave a general criteria and 102 three-term
formulae.
Stgrmer’s criteria (revised)

A necessary and sufficient condition for given integers
z1,To,...,Tn > 2 10 have a Machin-type formula (5) is as follows:

Js;j(1 <i<n,1<j<n-—1) integers,
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Stgrmer, 1896 gave a general criteria and 102 three-term
formulae.
Stgrmer’s criteria (revised)

A necessary and sufficient condition for given integers
z1,To,...,Tn > 2 10 have a Machin-type formula (5) is as follows:

Js;j(1 <i<n,1<j<n-—1) integers,

Iy, me, ..., mp_1: Gaussian integers s.1.
|:{L'z+\/__]-:| :nl:[l [77_]] £8i,5 o

fori=1,2,...,n.
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Now we would like to confine our interest to three-type formulae
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Now we would like to confine our interest to three-type formulae

1 1 1
ki arctan — + ko arctan — + ks arctan — = m )
i ) T3 4

in integers ki, ko, k3, x1, 2, x3, AN r with £ 0 and x1, x2, z3 > 2
and m; = n;n; for j = 1,2 with m; < mo.
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Other than 102 formulae, only three nonftrivial formulae are
known:
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Other than 102 formulae, only three nonftrivial formulae are
known:

Harctan 1 + 2 arctan i + arctan = B—F
2 53 4443 4’
5 arc‘can1 — 2arctan i — arctan 1 =T
3 53 4443 2’
and
5 arctan 1 + 4 arctan i + 2arctan 1 = Z
7 53 4443 4
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Other than 102 formulae, only three nonftrivial formulae are
known:

Harctan 1 + 2 arctan i + arctan = B—F
2 53 4443 4’
5 arctan1 — 2arctan i — arctan 1 =T
3 53 4443 2’
and
5 arctan 1 + 4 arctan i + 2arctan 1 = Z
7 53 4443 4

According fo the table of Wetherfield and Hwang, these
formulae have been found by Wrench, 1938, although these
formulae cannot be found there.
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Previously, the speaker proved that:

Y., 2018, arXiv: 1811.09273

There exist only finitely many integers xz;, k;(i = 1,2,3) and r with
T1,T2,T3 > 2, {xl,xg,xg} =4 {2,3, 7}, ng(kl, ko, ]{23) =1,andr #0
satisfying (7).
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Y., 2018, revised in 2025, arXiv: 1811.09273

Furthermore,

| If mymg > 101 and 2? + 1 > my fori = 1,2, 3, then
my < mo < 1.342 x 1034, log z; < 83801148333, and
|k;| < 9.152 - 101,
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Y., 2018, revised in 2025, arXiv: 1811.09273

Furthermore,
| If mymg > 101 and 2? + 1 > my fori = 1,2, 3, then
my < mo < 1.342 x 1034, log z; < 83801148333, and
|k;| < 9.152 - 101,

Il. If myme > 10'° and my does not divide z? + 1 for some i, then
my < 2.531 x 10?4, log ma < 294622, log z; < 5.054 x 102, and
lyi| < 1.312 x 10!, Moreover, log my < 40000 if additionally

my1 > 9.134 x 1022,
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Y., 2018, revised in 2025, arXiv: 1811.09273

Furthermore,

| If mymg > 101 and 2? + 1 > my fori = 1,2, 3, then
my < mo < 1.342 x 1034, log z; < 83801148333, and
|k;| < 9.152 - 101,

Il. If myme > 10'° and my does not divide z? + 1 for some i, then
my < 2.531 x 10?4, log ma < 294622, log z; < 5.054 x 102, and
lyi| < 1.312 x 10!, Moreover, log my < 40000 if additionally
mp > 9.134 x 1022,

Il If mymg < 1019, then log z; < 8813999998 and |y;| < 4.508 x 108,
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The speaker also proved:
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The speaker also proved:

Lemma 1, Y., 2018, revised in 2025 (continued)

If m; =5,13,17,37, and 41, then
log mo < 115315,116234,110031, 108986, and 118023 respectively.
Moreover, if 53 < my < 5000, then log my < 138880.
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The speaker also proved:

Lemma 1, Y., 2018, revised in 2025 (continued)

If my =5,13,17,37, and 41, then
log mo < 115315,116234,110031, 108986, and 118023 respectively.
Moreover, if 53 < my < 5000, then log my < 138880.

Proofs of these results involved a new lowerr bound for linear
forms of three logarithms by Mignotte, Voutier, and Laurent and
a new lower bound for linear forms of one logarithm and =i by
the speaker (arXiv: 1906.00419).
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Main results
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Main results

(7) has no new solution with x; € {2,3}, {z1, 22,23} # {2,3,7}.
(Known solutions up to 2023 have been given by Wetherfield and
Hwang)

v
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Main results

Theorem 1 (Y.)

(7) has no new solution with x; € {2,3}, {z1, 22,23} # {2,3,7}.

(Known solutions up to 2023 have been given by Wetherfield and
Hwang)

o

This does not imply that (7) has no new solution with x; = 7.

N\
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Main results

Theorem 1 (Y.)

(7) has no new solution with x; € {2,3}, {z1, 22,23} # {2,3,7}.
(Known solutions up to 2023 have been given by Wetherfield and
Hwang)

o

This does not imply that (7) has no new solution with x; = 7.
Although arctan(1/2) and arctan(1/7) are linearly dependent, if
we replace (7) with z; = 7and r # 0 by z; = 2, then » may
become zero.

v
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If we have (7) with 4 <z <9, {xl,mz,.%'g} 7é {2,3, 7},
ged(ky, ko, k3) = 1, and mymsy > 10'°, then z, and |k;| are bounded
by constants given in the table below.
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If we have (7) with 4 <z <9, {xl,xg,.’ﬂg} 7é {2,3, 7},
ged(ky, ko, k3) = 1, and mymsy > 10'°, then z, and |k;| are bounded
by constants given in the table below.

Table: Constants

r1 | my To < ‘k1| <

4 | 17 | 5.05 x 100 | 237902654
5 | 13 | 1.23 x 1017 | 467372721
6 | 37 | 1.81 x 10'6 | 171102423
71 5 ]9.59x10% | 517269881
8 | 65 | 3.38 x 10'6 | 309059478
9 | 41 | 2.05 x 10'6 | 391493587
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Proof of main results

We begin by a consequene of Stgrmer’s criteria:
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Proof of main results

We begin by a consequene of Stgrmer’s criteria:

If we have (7) in integers ki, ko, k3, 21, 22, z3, and r with » #£ 0 and
x1,T9,x3 > 2, then,
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Proof of main results

We begin by a consequene of Stgrmer’s criteria:

If we have (7) in integers ki, ko, k3, 21, 22, z3, and r with » #£ 0 and
x1, 22,23 > 2, then, putting m; = n;7; for j = 1,2 with m; < mo, we
have

V.
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Proof of main results

We begin by a consequene of Stgrmer’s criteria:

If we have (7) in integers ki, ko, k3, 21, 22, z3, and r with » #£ 0 and
x1, 22,23 > 2, then, putting m; = n;7; for j = 1,2 with m; < mo, we
have

2 984,095, 54,2
z; +1=2""m""m,

with s; ; nonnegative integers fori =1,2,3 and j =0, 1, 2.

o
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Proof of main results

We begin by a consequene of Stgrmer’s criteria:

If we have (7) in integers ki, ko, k3, 21, 22, z3, and r with » #£ 0 and
x1, 22,23 > 2, then, putting m; = n;7; for j = 1,2 with m; < mo, we
have

$z2 + 1= 28i’0mii,lm§i,2
with s; ; nonnegative integers fori =1,2,3 and j =0, 1, 2.
Moreover, s; o € {0,1} and we can take

ki = £8;11,18i42,2 £ 5i42,15i+1,2

with an appropriate combination of signs for i = 1,2, 3 (we take
84,5 = S1,5 and 85,5 = 52,5 fOI’j =1, 2).

o
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So that, we are led to exponential diophantine equations
2?2+1= mitms?

and

22 +1= 2mStms?.
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So that, we are led to exponential diophantine equations
2?2+1= mitms?

and

22 +1= 2mStms?.

In'Y. 2018/2025, the speaker proved that
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So that, we are led to exponential diophantine equations
2?2+1= mitms?

and
22 +1= 2mStms?.

In'Y. 2018/2025, the speaker proved that

Bounds for solutions of exponential diophantine equations
If 22 + 1 = m{'m$? or 2m{'ms5? with my € {5,13,17,37,41,65}, then,
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So that, we are led to exponential diophantine equations
2?2+1= mitms?

and
22 +1= 2mStms?.

In'Y. 2018/2025, the speaker proved that

Bounds for solutions of exponential diophantine equations

If 22 + 1 = m{'m$? or 2m{'ms5? with my € {5,13,17,37,41,65}, then,
for mymse > 1012, we have

e1logmy + ez logmy < Ay(logmy logmsy)log®(Aslogm,)
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So that, we are led to exponential diophantine equations
2?2+1= mitms?

and
22 +1= 2mStms?.

In'Y. 2018/2025, the speaker proved that

Bounds for solutions of exponential diophantine equations

If 22 + 1 = m{'m$? or 2m{'ms5? with my € {5,13,17,37,41,65}, then,
for mymse > 1012, we have

e1logmy + ez logmy < Ay(logmy logmsy)log®(Aslogm,)
and ofherwise

e1logmy + eglogmo < 1.7628mmso.
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It immediately follows that

If 22 + 1 = m{'m$? or 2m{'ms5? with my € {5,13,17,37,41,65} and
mima > 1019, then e; logm + ez logms < C1 logms, Wwhere Cy is
given in the table below.
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It immediately follows that

If 22 + 1 = m{'m$? or 2m{'ms5? with my € {5,13,17,37,41,65} and
mima > 1019, then e; logm + ez logms < C1 logms, Wwhere Cy is
given in the table below.

Table: Constants used in the proof

mq Cl 02

5 | 5586652 | 2.24 x 1018
13 | 7701563 | 2.69 x 108
17 | 4393299 | 7.5 x 10'7
37 | 4200431 | 5.33 x 107
41 | 9731735 | 3.01 x 10'8
65 | 8529020 | 2.43 x 10'8
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Moreover, in the case m; = 5, if my > 2 x 107, then,
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Lemma 3

Moreover, in the case m; = 5, if mg > 2 x 107, then, using the
same argument as in Y. 2018/2025, we can prove that

e1logmy + eslogms < Ayqlog5logme log2(A5 log 5),

where A, = 8443.506 and As = 966682877. Hence,
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Lemma 3

Moreover, in the case m; = 5, if mg > 2 x 107, then, using the
same argument as in Y. 2018/2025, we can prove that

e1logmy + eslogms < Ayqlog5logme log2(A5 log 5),

where A, = 8443.506 and As = 966682877. Hence,

e1logmy + ea log mo < 6087578 log ma.
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If 21 € {2,4,5,6,8,9}, then we can take m; = 22 + 1 or (2% +1)/2
andm =z +v—1.
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If 21 € {2,4,5,6,8,9}, then we can take m; = 22 + 1 or (2% +1)/2
and n; = z1 + v—1. Thus, Stgrmer’s criteria gives that

2241 =2"mfmb, 22 + 1 = 2'mSmg
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If 21 € {2,4,5,6,8,9}, then we can take m; = 22 + 1 or (2% +1)/2

and n; = z1 + v—1. Thus, Stgrmer’s criteria gives that

2241 =2"mfmb, 22 + 1 = 2'mSmg

with s, t € {0,1} and

{:m + ﬁr {xg + ﬁ} - [M]iadibc.

$2—\/—1 :Eg—\/—l 331—\/—1
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Upper bounds for k;

Hence, we have (7) with
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Upper bounds for k;

Hence, we have (7) with
g(kl, kz, k‘3) = (j:ad + bC, d, ﬂ:b),

g @ nonzero infeger (since we have assumed that

ged(k1, ko, k3) = 1), an appropriate combination of signs.

®
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Case |. mymeo: large

For simplicity, we limit ourselves to the case z; = 2. If mymy > 108,
then: Lemma 3 yields that

alogmy + blogma, clogm + dlogme < 6087578 log ma
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Case |. mymeo: large

For simplicity, we limit ourselves to the case z; = 2. If mymy > 108,
then: Lemma 3 yields that

alogmy + blogma, clogmy + dlogma < 6087578 log mas.

We see that

(6087578logma)*  6087578%log my

kil <ad+be <
[fr] < ad +be log 5log ms log 5
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Case |. mymeo: large J

For simplicity, we limit ourselves to the case z; = 2. If mymy > 108,
then: Lemma 3 yields that

alogmy + blogma, clogmy + dlogma < 6087578 log mas.

We see that

(6087578logma)*  6087578%log my

kil <ad+be <
[fr] < ad +be log 5log ms log 5

Since logms < 115315 by Lemmma 1, we obtain

k1] < 3.71 x 1013 log my < 4.27 x 108, |ka| , | k3| < 6087577.
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Using the simple continued fraction of 4 arctan(1/2) /7, we see
that

1 1 1
|0] := |kg arctan — + k3 arctan — ki arctan = — L) > 1.303x107%°,
T T 2 4

3
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Using the simple continued fraction of 4 arctan(1/2) /7, we see
that

1
k1 arctan 3~ % > 1.303><10720,

1 1
|0] := | kg arctan — + kg arctan —
T2 3

which yields that x5 < 7.68 x 1019(|b| + |d|) < 9.36 x 10?6 and
me < 23 +1 < 8.77 x 1053,

59/148



Hence, we obtain a < [log(2? +1)/log5| < 77 and
b < |log(8.77 x 10°®) /logma| < 7.
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Hence, we obtain a < [log(2? +1)/log5| < 77 and
b < |log(8.77 x 10°®) /logma| < 7.

Now (8) gives |k1| < 938558423 and

6] > 5.83 x 10711,
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Iterating our argument with the aid of b < 2, we have
ro < 1.05 x 1017, my < 1.11 x 10**, and a < 48.
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Iterating our argument with the aid of b < 2, we have
ro < 1.05 x 1017, my < 1.11 x 10**, and a < 48.

Hence, |ki| < 588716504.
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Case . myms: small

Similarly, if myms < 108 and my > 100, then
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Case . myms: small

Similarly, if mims < 108 and msy > 100, then
Lemma 2 yields that

alogmy + blogmy, clogmy 4+ dlogmy < 1.7628 x 10°.

We see that

(1.7628 x 10%)?
log m1 log ma

k1] < ad + be < < 4.2 x 10", |kol , |k3| < 38278715.
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Using the simple continued fraction of 4 arctan(1/2)/m, we obtain

6] > 4.3 x 1071,
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Using the simple continued fraction of 4 arctan(1/2)/m, we obtain
6] > 4.3 x 1071,

which yields that 2o < 7.45 x 102 and 23 + 1 < 5.56 x 10%7.
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Like above, we obtain a < 68, b < 23, |k1| < 1112253745, and

6| > 5.83 x 10711,
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Like above, we obtain a < 68, b < 23, |k1| < 1112253745, and
6| > 5.83 x 10711,

which yields that 2, < 6.57 x 107 and 23 + 1 < 4.32 x 10%,
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Like above, we obtain a < 68, b < 23, |k1| < 1112253745, and
6| > 5.83 x 10711,

which yields that z; < 6.57 x 1017 and 23 + 1 < 4.32 x 10%*. Hence,
we obtain a < 50, b < 17, and

k1| < 819932216.
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Checking each k;

For each k; < 819932216, we examined the simple contfinued
fraction of § to see that
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Checking each k;

For each k; < 819932216, we examined the simple contfinued
fraction of § to see that

1
k3 arctan —
z3

1
= ’(5 + ko arctan —| > 6.456 x 10742,
€2
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Checking each k; J

For each k; < 819932216, we examined the simple contfinued
fraction of § to see that

1
k3 arctan —
z3

1
= ’(5 + ko arctan —| > 6.456 x 10742,
€2

Since b < 2, we have
x5 < 3.098 x 10**, m3 < 9.6 x 1052,

from which we deduce that ¢ < 118 and d < 8.
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We can confirm that the equation 22 + 1 = 255% with3 < b < 7
and z,y > 1,
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We can confirm that the equation 22 + 1 = 255% with3 < b < 7
and z,y > 1, which can be reduced to Thue equations with
degree < 7 by factoring in Gaussian integers, has no integer
solution except (x,y, s,a,b) = (239,13,1,0,4).
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We can confirm that the equation 22 + 1 = 255% with3 < b < 7
and z,y > 1, which can be reduced to Thue equations with
degree < 7 by factoring in Gaussian integers, has no integer
solution except (x,y, s,a,b) = (239,13,1,0,4).

Hence, we must have b < 2.
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We can confirm that the equation 22 + 1 = 255% with3 < b < 7
and z,y > 1, which can be reduced to Thue equations with
degree < 7 by factoring in Gaussian integers, has no integer
solution except (x,y, s,a,b) = (239,13,1,0,4).

Hence, we must have b < 2.

Thus, we see that |k | < 390.
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We can confirm that the equation 22 + 1 = 255% with3 < b < 7
and z,y > 1, which can be reduced to Thue equations with
degree < 7 by factoring in Gaussian integers, has no integer
solution except (x,y, s,a,b) = (239,13,1,0,4).

Hence, we must have b < 2.
Thus, we see that |k | < 390.

For any (ky,r) with |k1| < 390, we must have || > 0.00062 and
r9 < 6451,
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Examining each z, < 6451, we found no new solution to (7). This
proves Theorem 1.
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Addendum (Mar 31. 2025)

We would like to provide a detail on the argument checking
each k; to conclude z3 < 3.098 x 1041,
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Addendum (Mar 31. 2025)

We would like to provide a detail on the argument checking
each k; to conclude z3 < 3.098 x 1041,

We begin by confirm that:

If we have 22 + 1 = 25%m? for some nonnegative integers x, s, a, b,
and m with 1.4 x 10% < z < 10%°, then m® > 2 x 10° and b < 2.
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Addendum (Mar 31. 2025)

We would like to provide a detail on the argument checking
each k; to conclude z3 < 3.098 x 1041,

We begin by confirm that:

If we have 22 + 1 = 25%m? for some nonnegative integers x, s, a, b,
and m with 1.4 x 10% < z < 10%°, then m® > 2 x 10° and b < 2.

Indeed, if 1.4 x 10° < z < 100 and m? < 2 x 10, then 13 < a < 85.
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Addendum (Mar 31. 2025)

We would like to provide a detail on the argument checking
each k; to conclude z3 < 3.098 x 1041,

We begin by confirm that:

If we have 22 + 1 = 25%m? for some nonnegative integers x, s, a, b,
and m with 1.4 x 10% < z < 10%°, then m® > 2 x 10° and b < 2.

Indeed, if 1.4 x 10° < z < 103 and m® < 2 x 10%, then 13 < a < 85.
For each a, we confirmed that 5% | (22 + 1) implies
(2 +1)/5% > 4 x 10°.

83/148



Addendum (Mar 31. 2025)

We would like to provide a detail on the argument checking
each k; to conclude z3 < 3.098 x 1041,

We begin by confirm that:

If we have 22 + 1 = 25%m? for some nonnegative integers x, s, a, b,
and m with 1.4 x 10% < z < 10%°, then m® > 2 x 10° and b < 2.

Indeed, if 1.4 x 10° < z < 103 and m® < 2 x 10%, then 13 < a < 85.
For each a, we confirmed that 5% | (22 + 1) implies

(2 +1)/5% > 4 x 10°.

Now we must have b < 6 and then b < 2 like above.
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Put ) .
0o = k1 arctan — + ko arctan — — E.
2 T2 4
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Put 1 .
dp = kq arctan — + kg arctan — — r—ﬂ.
2 T2 4

In the case b =1, we obtain

If b= 1 and |5| < 1073, then |§| < 1/8 or 23 < 3.098 x 10*!,
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We checked each z5 < 50000000 and each x4 > 50000000 with
73 + 1 = 2°5%m, and my < 10° (we can confirm that there exist
only a limit number of such z5’s in a similar way to confirm
Lemmma 4)
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We checked each z5 < 50000000 and each x4 > 50000000 with
73 + 1 = 2°5%m, and my < 10° (we can confirm that there exist
only a limit number of such z5’s in a similar way to confirm
Lemma 4) to see that |5g| > 10735 for such .
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We checked each z5 < 50000000 and each x4 > 50000000 with
73 + 1 = 2°5%m, and my < 10° (we can confirm that there exist
only a limit number of such z5’s in a similar way to confirm
Lemma 4) to see that |5g| > 10735 for such .

Hence, we must have ms > 2 x 107, which limits us to Case |, and
zo > 50000000.
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We checked each z5 < 50000000 and each x4 > 50000000 with
73 + 1 = 2°5%m, and my < 10° (we can confirm that there exist
only a limit number of such z5’s in a similar way to confirm
Lemma 4) to see that |5g| > 10735 for such .

Hence, we must have ms > 2 x 107, which limits us to Case |, and
zo > 50000000.

Thus, we see that

9] < 0.122 4 00875TT

and the Lemmma holds.
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If b=1and |§| < 1/8, then x3 < 3.098 x 10!, I
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If b=1and |§| < 1/8, then x3 < 3.098 x 10!, I

Put

k 1 k
51=5—|——2=k1arctan——ﬂ+—2.
9o 2 4 X9
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If b=1and |§| < 1/8, then x3 < 3.098 x 10!, I

Put

k 1 k
51:6+—2:k1arctan——r—7r+—2.
o 2 4 X9

If |61] > 1/(223), then, noting that |ky/z2| < 1/8 and
z9 < 1.05 x 1017,
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If b=1and |§| < 1/8, then x3 < 3.098 x 10!, I

Put

ko 1 k
51—6+——k1arctan——r—7r+—2.
xT9 2 4 X9

If |61] > 1/(223), then, noting that |ky/z2| < 1/8 and
z9 < 1.05 x 1017,

1 1
|00| = |k1 arctan + ko arctan — — ™
X9 4
|k2| 11 —40
> |01] — > 1077,
1] 2472
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If |61] < 1/(223), then ky/z2 must be a convergent to —4.
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If |61] < 1/(223), then ky/z2 must be a convergent to —4.
Checking each convergent to —§ (we note that since r is
uniquely determined for each k; since [6] < 1/8),
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If |61] < 1/(223), then ky/z2 must be a convergent to —4.
Checking each convergent to —§ (we note that since r is
uniquely determined for each k; since |4| < 1/8), we have

1
ks arctan — > 6.456 x 10742

T3

1
= ‘5 + ko arctan —
€2
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If |61] < 1/(223), then ky/z2 must be a convergent to —4.
Checking each convergent to —§ (we note that since r is
uniquely determined for each k; since |4| < 1/8), we have

1
ks arctan — > 6.456 x 10742

T3

1
= ‘5 + ko arctan —
€2

and therefore x5 < 3.098 x 104!,
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In the case b = 2, we have 22 + 1 = 2y2, 5%, or 10y? and
To < 7.45 x 10%3,
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In the case b = 2, we have 22 + 1 = 2y2, 5%, or 10y? and
X9 < T7.45 x 1073,

We check each x4 To obtain no new solution to (7).
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In the case b = 2, we have 22 + 1 = 2y2, 5%, or 10y? and
X9 < T7.45 x 1073,

We check each x4 To obtain no new solution to (7).

Now, with the aid of Lemma 4, we must have z3 < 3.098 x 10*' as
we desired!
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For other 21, we have m; € {5,13,17,37,41,65} and |k;| < Cs,
where (s is given in Table 2,
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For other 21, we have m; € {5,13,17,37,41,65} and |k;| < Cs,
where O is given in Table 2, and a similar argument gives
Theorem 2.
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For other 21, we have m; € {5,13,17,37,41,65} and |k;| < Cs,
where O is given in Table 2, and a similar argument gives
Theorem 2.

However, we have not checked for each (k;,r) below given
bounds.
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Related problems
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Related problems

() Find all integer solutions (z, a, b, q) of z2 + 1 = 2p%¢® with
s €{0,1}, p € {5,13,17,37,41},a > 0,b > 3, and ¢ A prime.
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Related problems

() Find all integer solutions (z, a, b, q) of z2 + 1 = 2p%¢® with
s €{0,1}, p € {5,13,17,37,41},a > 0,b > 3, and ¢ A prime.

(I Find all integer solutions of (xz,y, p) of 22 + 1 = Dy? with
D e {5,10,17,26,37,65,82}
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Related problems
() Find all integer solutions (z, a, b, ¢) of 2 + 1 = 2°p%¢® with
s €{0,1}, p € {5,13,17,37,41},a > 0,b > 3, and ¢ A prime.
(I Find all integer solutions of (xz,y, p) of 22 + 1 = Dy? with
D e {5,10,17,26, 37,65, 82}.

() with ¢ an integer (not necessarily a prime) would yield the
complete solution of (7) with 2 < z; < 7 or z; = 9 but seems 1o be
extremely difficult,
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Related problems
() Find all integer solutions (z, a, b, ¢) of 2 + 1 = 2°p%¢® with
s €{0,1}, p € {5,13,17,37,41},a > 0,b > 3, and ¢ A prime.

(I Find all integer solutions of (xz,y, p) of 22 + 1 = Dy? with
D e {5,10,17,26, 37,65, 82}.

() with ¢ an integer (not necessarily a prime) would yield the
complete solution of (7) with 2 < z; < 7 or z; = 9 but seems 1o be
extremely difficult. The limited problem (II) would be more
accesible (but a problem with n an integer (possibly odd) in
place of 2p would be more hard).
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For example, in the case D = 10, we assume that p > 11 and put
wm —wm
w—w

with w =3 ++/10
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For example, in the case D = 10, we assume that p > 11 and put
m __ —m
V=" +@", Uy = hd f
w —w
with w = 3 + /10 and we see that

x = Vont1,¥" = Uspt1

for some integer n.
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Then, Bennett-Skinner method applied to the Frey curve
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Then, Bennett-Skinner method applied to the Frey curve

En:Y?=X3 42V, 1 X2+ 109X
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Then, Bennett-Skinner method applied to the Frey curve
En:Y?=X3 42V, 1 X2+ 109X

yields that the Galois representation pZ associated to E,, arises
from a cuspidal newform of weight 2, level 640, and frivial
Nebentypes character.

114/148



There are twelve such newforms 640.2.a.0-640.2.a.] according
to LMFDB.

115/148



There are twelve such newforms 640.2.a.0-640.2.a.] according
to LMFDB.

640.2.0.i-640.2.a.l: defined over Q(v/5). In this case, we have a
contradiction examining ¢, and a,(E,,) for a few primes ¢.
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There are twelve such newforms 640.2.a.0-640.2.a.] according
to LMFDB.

640.2.0.i-640.2.a.l: defined over Q(v/5). In this case, we have a
contradiction examining ¢, and a,(E,,) for a few primes ¢.

640.2.a.d: Taking ¢ = 13
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There are twelve such newforms 640.2.a.0-640.2.a.] according
to LMFDB.

640.2.0.i-640.2.a.l: defined over Q(v/5). In this case, we have a
contradiction examining ¢, and a,(E,,) for a few primes ¢.

640.2.a.d: Taking ¢ = 13 and observing that ¢;5 = —2 while
alg(En) S {2, *6},
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There are twelve such newforms 640.2.a.0-640.2.a.] according
to LMFDB.

640.2.0.i-640.2.a.l: defined over Q(v/5). In this case, we have a
contradiction examining ¢, and a,(E,,) for a few primes ¢.

640.2.a.d: Taking ¢ = 13 and observing that ¢;5 = —2 while
a13(Ey) € {2,—6}, we must have p | 48, which is a contradiction.
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There are twelve such newforms 640.2.a.0-640.2.a.] according
to LMFDB.

640.2.0.i-640.2.a.l: defined over Q(v/5). In this case, we have a
contradiction examining ¢, and a,(E,,) for a few primes ¢.

640.2.a.d: Taking ¢ = 13 and observing that ¢;5 = —2 while
a13(Ey) € {2,—6}, we must have p | 48, which is a contradiction.

Similarly, we see that p,(E,) cannot arise from 640.2.a.a-d or
640.2.a.g-h.
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There are twelve such newforms 640.2.a.0-640.2.a.] according
to LMFDB.

640.2.0.i-640.2.a.l: defined over Q(v/5). In this case, we have a
contradiction examining ¢, and a,(E,,) for a few primes ¢.

640.2.a.d: Taking ¢ = 13 and observing that ¢;5 = —2 while
a13(Ey) € {2,—6}, we must have p | 48, which is a contradiction.

Similarly, we see that p,(E,) cannot arise from 640.2.a.a-d or
640.2.a.g-h.
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640.2.a.e: Using the technique in Bugeaud-Mignotte-Siksek, we
see that, taking ¢ = 11, we must have n = 6,11 (mod 12).
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640.2.a.e: Using the technique in Bugeaud-Mignotte-Siksek, we
see that, taking ¢ = 11, we must have n = 6,11 (mod 12).
However, taking ¢ = 13 yields that n = 0,2, 3,5 (mod 12), which is a
contradiction.

123 /148



The 640.2.a.f case

Bugeaud-Mignotte-Siksek would allow us to settle 640.2.a.f but it
would require a considerable amount of computation.
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