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The Machin’s formula (Machin, 1706)
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is well known and have been used to calculate approximate
values of π.
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(2)-(4) were attributed to Euler, Hutton and Hermann,
respectively. But according to Tweddle, 1991, these formulae
also seem to have been found by Machin.
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Several three-term formulae also have been known. For
example,
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by Simson in 1723 and by Gauss in 1863 respectively (see
Tweddle, 1991).
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Two-term Machin-type formulae (Størmer, 1895)
There exist only four two-term formulae (1)-(4).
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A problem
For given n ≥ 3, determine all n-term Machin-type formulae
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with k1, . . . , kn, x1, . . . , xn, and r integers with x1, . . . , xn ≥ 2 and
r ̸= 0.

This problem is unsolved even for n = 3.
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Størmer, 1896 gave a general criteria and 102 three-term
formulae.

Størmer’s criteria (revised)
A necessary and sufficient condition for given integers
x1, x2, . . . , xn ≥ 2 to have a Machin-type formula (5) is as follows:
∃sij(1 ≤ i ≤ n, 1 ≤ j ≤ n− 1): integers,

∃η1, η2, . . . , ηn−1: Gaussian integers s.t.[
xi +

√
−1

xi −
√
−1

]
=

n−1∏
j=1

[
ηj
η̄j

]±si,j

(6)

for i = 1, 2, . . . , n.
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Now we would like to confine our interest to three-type formulae
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in integers k1, k2, k3, x1, x2, x3, and r with r ̸= 0 and x1, x2, x3 ≥ 2
and mj = ηj η̄j for j = 1, 2 with m1 < m2.
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Other than 102 formulae, only three nontrivial formulae are
known:
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According to the table of Wetherfield and Hwang, these
formulae have been found by Wrench, 1938, although these
formulae cannot be found there.
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Previously, the speaker proved that:

Y., 2018, arXiv: 1811.09273
There exist only finitely many integers xi, ki(i = 1, 2, 3) and r with
x1, x2, x3 ≥ 2, {x1, x2, x3} ̸= {2, 3, 7}, gcd(k1, k2, k3) = 1, and r ̸= 0
satisfying (7).
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Y., 2018, revised in 2025, arXiv: 1811.09273
Furthermore,

I. If m1m2 ≥ 1010 and x2i + 1 ≥ m2 for i = 1, 2, 3, then
m1 < m2 < 1.342× 1034, log xi < 83801148333, and
|ki| < 9.152 · 1016.

II. If m1m2 ≥ 1010 and m2 does not divide x2i + 1 for some i, then
m1 < 2.531× 1024, logm2 < 294622, log xi < 5.054× 1012, and
|yi| < 1.312× 1019. Moreover, logm2 < 40000 if additionally
m1 ≥ 9.134× 1022.

III. If m1m2 < 1010, then log xi < 8813999998 and |yi| < 4.508× 1018.
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The speaker also proved:

Lemma 1, Y., 2018, revised in 2025 (continued)
If m1 = 5, 13, 17, 37, and 41, then
logm2 < 115315, 116234, 110031, 108986, and 118023 respectively.
Moreover, if 53 ≤ m1 < 5000, then logm2 < 138880.

Proofs of these results involved a new lowerr bound for linear
forms of three logarithms by Mignotte, Voutier, and Laurent and
a new lower bound for linear forms of one logarithm and πi by
the speaker (arXiv: 1906.00419).
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Theorem 1 (Y.)
(7) has no new solution with x1 ∈ {2, 3}, {x1, x2, x3} ̸= {2, 3, 7}.
(Known solutions up to 2023 have been given by Wetherfield and
Hwang)

Note
This does not imply that (7) has no new solution with x1 = 7.
Although arctan(1/2) and arctan(1/7) are linearly dependent, if
we replace (7) with x1 = 7 and r ̸= 0 by x1 = 2, then r may
become zero.
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Theorem 2 (Y.)
If we have (7) with 4 ≤ x1 ≤ 9, {x1, x2, x3} ̸= {2, 3, 7},
gcd(k1, k2, k3) = 1, and m1m2 > 1010, then x2 and |k1| are bounded
by constants given in the table below.

Table: Constants

x1 m1 x2 < |k1| ≤
4 17 5.05× 1016 237902654
5 13 1.23× 1017 467372721
6 37 1.81× 1016 171102423
7 5 9.59× 1016 517269881
8 65 3.38× 1016 309059478
9 41 2.05× 1016 391493587
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We begin by a consequene of Størmer’s criteria:

If we have (7) in integers k1, k2, k3, x1, x2, x3, and r with r ̸= 0 and
x1, x2, x3 ≥ 2, then, putting mj = ηj η̄j for j = 1, 2 with m1 < m2, we
have

x2i + 1 = 2si,0m
si,1
1 m

si,2
2

with si,j nonnegative integers for i = 1, 2, 3 and j = 0, 1, 2.
Moreover, si,0 ∈ {0, 1} and we can take

ki = ±si+1,1si+2,2 ± si+2,1si+1,2

with an appropriate combination of signs for i = 1, 2, 3 (we take
s4,j = s1,j and s5,j = s2,j for j = 1, 2).
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So that, we are led to exponential diophantine equations

x2 + 1 = me1
1 me2

2

and
x2 + 1 = 2me1

1 me2
2 .

In Y. 2018/2025, the speaker proved that

Bounds for solutions of exponential diophantine equations
If x2 + 1 = me1

1 me2
2 or 2me1

1 me2
2 with m1 ∈ {5, 13, 17, 37, 41, 65}, then,

for m1m2 ≥ 1010, we have

e1 logm1 + e2 logm2 ≤ A4(logm1 logm2) log
2(A5 logm1)

and otherwise

e1 logm1 + e2 logm2 < 1.7628m1m2.
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It immediately follows that

Lemma 2
If x2 + 1 = me1

1 me2
2 or 2me1

1 me2
2 with m1 ∈ {5, 13, 17, 37, 41, 65} and

m1m2 > 1010, then e1 logm1 + e2 logm2 < C1 logm2, where C1 is
given in the table below.

Table: Constants used in the proof

m1 C1 C2

5 5586652 2.24× 1018

13 7701563 2.69× 1018

17 4393299 7.5× 1017

37 4200431 5.33× 1017

41 9731735 3.01× 1018

65 8529020 2.43× 1018
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Lemma 3
Moreover, in the case m1 = 5, if m2 > 2× 107, then, using the
same argument as in Y. 2018/2025, we can prove that

e1 logm1 + e2 logm2 < A4 log 5 logm2 log
2(A5 log 5),

where A4 = 8443.506 and A5 = 966682877. Hence,

e1 logm1 + e2 logm2 < 6087578 logm2.
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If x1 ∈ {2, 4, 5, 6, 8, 9}, then we can take m1 = x2 + 1 or (x2 + 1)/2
and η1 = x1 +

√
−1. Thus, Størmer’s criteria gives that

x22 + 1 = 2sma
1m

b
2, x

2
3 + 1 = 2tmc

1m
d
2

with s, t ∈ {0, 1} and[
x2 +

√
−1

x2 −
√
−1

]d [
x3 +

√
−1

x3 −
√
−1

]±b

=

[
x1 +

√
−1

x1 −
√
−1

]±ad±bc

.
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Upper bounds for k1

Hence, we have (7) with

g(k1, k2, k3) = (±ad± bc, d,±b), (8)

g a nonzero integer (since we have assumed that
gcd(k1, k2, k3) = 1), an appropriate combination of signs.
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Case I. m1m2: large

For simplicity, we limit ourselves to the case x1 = 2. If m1m2 > 108,
then: Lemma 3 yields that

a logm1 + b logm2, c logm1 + d logm2 < 6087578 logm2.

We see that

|k1| ≤ ad+ bc <
(6087578 logm2)

2

log 5 logm2
=

60875782 logm2

log 5
.

Since logm2 < 115315 by Lemma 1, we obtain

|k1| < 3.71× 1013 logm2 < 4.27× 1018, |k2| , |k3| ≤ 6087577.
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Using the simple continued fraction of 4 arctan(1/2)/π, we see
that

|δ| :=
∣∣∣∣k2 arctan 1

x2
+ k3 arctan

1

x3

∣∣∣∣ = ∣∣∣∣k1 arctan 1

2
− rπ

4

∣∣∣∣ > 1.303×10−20,

which yields that x2 < 7.68× 1019(|b|+ |d|) < 9.36× 1026 and
m2 ≤ x22 + 1 < 8.77× 1053.

58 / 148



Using the simple continued fraction of 4 arctan(1/2)/π, we see
that

|δ| :=
∣∣∣∣k2 arctan 1

x2
+ k3 arctan

1

x3

∣∣∣∣ = ∣∣∣∣k1 arctan 1

2
− rπ

4

∣∣∣∣ > 1.303×10−20,

which yields that x2 < 7.68× 1019(|b|+ |d|) < 9.36× 1026 and
m2 ≤ x22 + 1 < 8.77× 1053.

59 / 148



Hence, we obtain a ≤
⌊
log(x2 + 1)/ log 5

⌋
≤ 77 and

b ≤
⌊
log(8.77× 1053)/ logm2

⌋
≤ 7.

Now (8) gives |k1| ≤ 938558423 and

|δ| > 5.83× 10−11.
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Iterating our argument with the aid of b ≤ 2, we have
x2 < 1.05× 1017, m2 ≤ 1.11× 1034, and a ≤ 48.

Hence, |k1| ≤ 588716504.
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Case II. m1m2: small

Similarly, if m1m2 ≤ 108 and m2 > 100, then
Lemma 2 yields that

a logm1 + b logm2, c logm1 + d logm2 < 1.7628× 108.

We see that

|k1| ≤ ad+ bc <
(1.7628× 108)2

logm1 logm2
< 4.2× 1015, |k2| , |k3| ≤ 38278715.
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Using the simple continued fraction of 4 arctan(1/2)/π, we obtain

|δ| > 4.3× 10−15,

which yields that x2 < 7.45× 1023 and x22 + 1 < 5.56× 1047.
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Like above, we obtain a ≤ 68, b ≤ 23, |k1| ≤ 1112253745, and

|δ| > 5.83× 10−11,

which yields that x2 < 6.57× 1017 and x22 + 1 < 4.32× 1035. Hence,
we obtain a ≤ 50, b ≤ 17, and

|k1| ≤ 819932216.
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Checking each k1

For each k1 ≤ 819932216, we examined the simple continued
fraction of δ to see that∣∣∣∣k3 arctan 1

x3

∣∣∣∣ = ∣∣∣∣δ + k2 arctan
1

x2

∣∣∣∣ > 6.456× 10−42.

Since b ≤ 2, we have

x3 < 3.098× 1041,m3 < 9.6× 1082,

from which we deduce that c ≤ 118 and d ≤ 8.
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We can confirm that the equation x2 + 1 = 2s5ayb with 3 ≤ b ≤ 7
and x, y > 1, which can be reduced to Thue equations with
degree ≤ 7 by factoring in Gaussian integers, has no integer
solution except (x, y, s, a, b) = (239, 13, 1, 0, 4).

Hence, we must have b ≤ 2.

Thus, we see that |k1| ≤ 390.

For any (k1, r) with |k1| ≤ 390, we must have |δ| > 0.00062 and
x2 ≤ 6451.
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Examining each x2 ≤ 6451, we found no new solution to (7). This
proves Theorem 1.
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Addendum (Mar 31. 2025)
We would like to provide a detail on the argument checking
each k1 to conclude x3 < 3.098× 1041.

We begin by confirm that:

Lemma 4
If we have x2 + 1 = 2s5amb for some nonnegative integers x, s, a, b,
and m with 1.4× 109 < x < 1030, then mb > 2× 109 and b ≤ 2.

Indeed, if 1.4× 109 < x < 1030 and mb ≤ 2× 109, then 13 ≤ a ≤ 85.
For each a, we confirmed that 5a | (x2 + 1) implies
(x2 + 1)/5a > 4× 109.
Now we must have b ≤ 6 and then b ≤ 2 like above.
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Put
δ0 = k1 arctan

1

2
+ k2 arctan

1

x2
− rπ

4
.

In the case b = 1, we obtain

Lemma 5
If b = 1 and |δ0| < 10−35, then |δ| < 1/8 or x3 < 3.098× 1041.

85 / 148



Put
δ0 = k1 arctan

1

2
+ k2 arctan

1

x2
− rπ

4
.

In the case b = 1, we obtain

Lemma 5
If b = 1 and |δ0| < 10−35, then |δ| < 1/8 or x3 < 3.098× 1041.

86 / 148



We checked each x2 ≤ 50000000 and each x2 > 50000000 with
x22 + 1 = 2s5am2 and m2 ≤ 109 (we can confirm that there exist
only a limit number of such x2’s in a similar way to confirm
Lemma 4) to see that |δ0| ≥ 10−35 for such x2.

Hence, we must have m2 > 2× 107, which limits us to Case I, and
x2 > 50000000.

Thus, we see that
|δ| < 0.122 +

6087577

x3

and the Lemma holds.
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Lemma 6
If b = 1 and |δ| < 1/8, then x3 < 3.098× 1041.

Put
δ1 = δ +

k2
x2

= k1 arctan
1

2
− rπ

4
+

k2
x2

.

If |δ1| ≥ 1/(2x22), then, noting that |k2/x2| < 1/8 and
x2 < 1.05× 1017,

|δ0| =
∣∣∣∣k1 arctan 1

2
+ k2 arctan

1

x2
− rπ

4

∣∣∣∣
> |δ1| −

|k2|
3x32

>
11

24x22
> 10−40.
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If |δ1| < 1/(2x22), then k2/x2 must be a convergent to −δ.
Checking each convergent to −δ (we note that since r is
uniquely determined for each k1 since |δ| < 1/8), we have∣∣∣∣k3 arctan 1

x3

∣∣∣∣ = ∣∣∣∣δ + k2 arctan
1

x2

∣∣∣∣ > 6.456× 10−42

and therefore x3 < 3.098× 1041.
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In the case b = 2, we have x22 + 1 = 2y2, 5y2, or 10y2 and
x2 < 7.45× 1023.

We check each x2 to obtain no new solution to (7).

Now, with the aid of Lemma 4, we must have x3 < 3.098× 1041 as
we desired!
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For other x1, we have m1 ∈ {5, 13, 17, 37, 41, 65} and |k1| < C2,
where C2 is given in Table 2, and a similar argument gives
Theorem 2.

However, we have not checked for each (k1, r) below given
bounds.
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Related problems

(I) Find all integer solutions (x, a, b, q) of x2 + 1 = 2spaqb with
s ∈ {0, 1}, p ∈ {5, 13, 17, 37, 41}, a ≥ 0, b ≥ 3, and q a prime.

(II) Find all integer solutions of (x, y, p) of x2 + 1 = Dy2p with
D ∈ {5, 10, 17, 26, 37, 65, 82}.

(I) with q an integer (not necessarily a prime) would yield the
complete solution of (7) with 2 ≤ x1 ≤ 7 or x1 = 9 but seems to be
extremely difficult. The limited problem (II) would be more
accesible (but a problem with n an integer (possibly odd) in
place of 2p would be more hard).
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complete solution of (7) with 2 ≤ x1 ≤ 7 or x1 = 9 but seems to be
extremely difficult. The limited problem (II) would be more
accesible (but a problem with n an integer (possibly odd) in
place of 2p would be more hard).
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For example, in the case D = 10, we assume that p ≥ 11 and put

Vm = ωm + ωm, Um =
ωm − ωm

ω − ω

with ω = 3 +
√
10 and we see that

x = V2n+1, y
p = U2n+1

for some integer n.
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Then, Bennett-Skinner method applied to the Frey curve

En : Y 2 = X3 + 2V2n+1X
2 + 10y2pX

yields that the Galois representation ρEn associated to En arises
from a cuspidal newform of weight 2, level 640, and trivial
Nebentypes character.
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There are twelve such newforms 640.2.a.a–640.2.a.l according
to LMFDB.

640.2.a.i-640.2.a.l: defined over Q(
√
5). In this case, we have a

contradiction examining cℓ and aℓ(En) for a few primes ℓ.

640.2.a.d: Taking ℓ = 13 and observing that c13 = −2 while
a13(En) ∈ {2,−6}, we must have p | 48, which is a contradiction.

Similarly, we see that ρp(En) cannot arise from 640.2.a.a–d or
640.2.a.g–h.
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640.2.a.e: Using the technique in Bugeaud-Mignotte-Siksek, we
see that, taking ℓ = 11, we must have n ≡ 6, 11 (mod 12).
However, taking ℓ = 13 yields that n ≡ 0, 2, 3, 5 (mod 12), which is a
contradiction.
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The 640.2.a.f case
Bugeaud-Mignotte-Siksek would allow us to settle 640.2.a.f but it
would require a considerable amount of computation.
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