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As usual, let

σ(N): the sum of divisors of N ,
ω(n): the number of distinct prime factors of n,
τ(n): the number of divisors of n.

We study arithmetic properties of integers N satisfying

σ(N) = pe (1)

for some prime p.
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Factoring N =
∏

i q
fi
i with q1 < q2 < · · · primes, (1) immediately

yields that
qsii − 1

qi − 1
= pgi (2)

for each i, where si = fi + 1 and gi is a certain positive integer.

It is conjectured that
only (qi, si) = (3, 5) satisfies (2) with gi ≥ 2 and
(2) with gi = 1 has at most one solution except
25 − 1 = 52 + 5 + 1 = 31

but these conjectures are still unsolved (mentioned a little more
later).
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Theorem 1 (Y.)
If σ(N) = pe for some prime p, then σ(N)/N < 5.388.

Theorem 2 (Y.)
If σ(N) = pe for some prime p ≥ exp expxi, then q2 > exp ci, where
(xi, ci) = (42.04, 14), (42.31, 15), (42.56, 16), . . . , (46.67, 45), . . ..

Theorem 3 (Y.)
If σ(N) = pe for some prime p ≥ exp exp 46.67, then σ(N)/N < 1.1 or
p = σ(qf11 ) with q1 ≤ 31.
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An integer N is called perfect if

σ(N) = 2N.

It is well known that an integer N is even perfect if and only if
N = 2p−1(2p − 1) with 2p − 1 prime.

Unsolved problem
Is there any odd perfect number?
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In the Sendai-Hiroshima seven years ago, the speaker introduced
some related notions and problems and the speaker’s results.
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N is called superperfect if

σ(σ(N)) = 2N.

For example, N = 2p−1 is superperfect if 2p − 1 is prime since

σ(σ(2p−1)) = σ(2p − 1) = 2p.

In fact, it is known that any even superperfect number must have
this form.

Unsolved problem
Is there any odd superperfect number?
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k-ary divisors
A divisor d of N is called a unitary divisor if gcd(d,N/d) = 1.
A divisor d of N is called a biunitary divisor if the greatest
common unitary divisor gcd1(d,N/d) = 1.
More generally, we can define k-ary divisor recursively. A
divisor d of N is called a (k + 1)-ary divisor if gcdk(d,N/d) = 1.
Moreover, it is known that if pm is a (e− 1)-ary divisor of pe,
then pm is a k-ary divisor of pe for any k ≥ e− 1. A divisor
d =

∏
i p

mi
i of N =

∏
i p

ei
i is called an infinitary divisor if each

pmi
i is an infinitary divisor of peii .

The sum of k-ary divisors of N is denoted by σ(k)(N) or σ∗∗···∗(N)
with k stars.
We note that σ∗(N) =

∏
i(p

ei
i + 1) and, writing ei = 2ki,1 + · · ·+ 2ki,ti

with ki,1 > · · · > ki,ti for each i, σ(∞)(N) =
∏

i,j(p
2ki,j
i + 1).
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Moreover, it is known that if pm is a (e− 1)-ary divisor of pe,
then pm is a k-ary divisor of pe for any k ≥ e− 1. A divisor
d =

∏
i p

mi
i of N =

∏
i p

ei
i is called an infinitary divisor if each

pmi
i is an infinitary divisor of peii .

The sum of k-ary divisors of N is denoted by σ(k)(N) or σ∗∗···∗(N)
with k stars.
We note that σ∗(N) =

∏
i(p

ei
i + 1) and, writing ei = 2ki,1 + · · ·+ 2ki,ti

with ki,1 > · · · > ki,ti for each i, σ(∞)(N) =
∏

i,j(p
2ki,j
i + 1).
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k-ary perfect
Unitary perfect: σ∗(N) = 2N ,
6, 60, 90, 87360, 146361946186458562560000 (OEIS: A002827)
Biunitary perfect: σ∗∗(N) = 2N , 6, 60, 90
k-ary perfect: σ(k)(N) = 2N .
For example, 3-ary perfect: 6, 60, 90, 36720, 47520, . . .
(OEIS:A324707)
Infinitary perfect: 6, 60, 90, 36720, 12646368, . . . (OEIS:A007357)

It is known that there exists no odd k-ary perfect number for
k ≥ 1.
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Unsolved problem
Are there only finitely many even k-ary perfect numbers for each
k?

The only settled case is k = 2: 6, 60, 90 are the only biunitary
perfect numbers (Wall, 1971).
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k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

68 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

69 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

70 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

71 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

72 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

73 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

74 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

75 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

76 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

77 / 273

https://oeis.org/A038843


k-ary superperfect
Unitary superperfect: σ∗(σ∗(N)) = 2N , 2, 9, 165, 238, . . .
(OEIS:A038843)
Biunitary superperfect: σ∗∗(σ∗∗(N)) = 2N , 2, 9
k-ary superperfect: σ(k)(σ(k)(N)) = 2N .
Infinitary superperfect: 2, 9

Unsolved problem
Are there any other infinitary superperfect number?

78 / 273

https://oeis.org/A038843


Y., 2017
9 is the only odd infinitary superperfect number.

Y., 2018
2 and 9 are the only biunitary superperfect numbers, EVEN or
ODD!
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Our motivation
Hybrid two σ(k) functions!

σ∗(σ(N)) = 2N : 27, 63, 165, 238, and 2p−1 with 2p − 1 prime
σ∗∗(σ(N)) = 2N : 2p−1 with 2p − 1 prime
σ(σ∗(N)) = 2N, σ(σ∗∗(N)) = 2N : 2, 9

c.f.
σ∗(σ(N)) = kN : 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . .
(OEIS: A045795)
σ(σ∗(N)) = kN : 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, . . .
(OEIS: A083288)
Sándor and Kovács, 2009: N = 2 is the only even integers
satisfying σ(σ∗∗(N)) = 2N .
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Sándor and Kovács, 2009: N = 2 is the only even integers
satisfying σ(σ∗∗(N)) = 2N .

85 / 273

https://oeis.org/A045795
https://oeis.org/A083288


Our motivation
Hybrid two σ(k) functions!

σ∗(σ(N)) = 2N : 27, 63, 165, 238, and 2p−1 with 2p − 1 prime
σ∗∗(σ(N)) = 2N : 2p−1 with 2p − 1 prime
σ(σ∗(N)) = 2N, σ(σ∗∗(N)) = 2N : 2, 9

c.f.
σ∗(σ(N)) = kN : 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . .
(OEIS: A045795)
σ(σ∗(N)) = kN : 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, . . .
(OEIS: A083288)
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Sándor and Kovács, 2009: N = 2 is the only even integers
satisfying σ(σ∗∗(N)) = 2N .

91 / 273

https://oeis.org/A045795
https://oeis.org/A083288


Our motivation
Hybrid two σ(k) functions!

σ∗(σ(N)) = 2N : 27, 63, 165, 238, and 2p−1 with 2p − 1 prime
σ∗∗(σ(N)) = 2N : 2p−1 with 2p − 1 prime
σ(σ∗(N)) = 2N, σ(σ∗∗(N)) = 2N : 2, 9

c.f.
σ∗(σ(N)) = kN : 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . .
(OEIS: A045795)
σ(σ∗(N)) = kN : 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, . . .
(OEIS: A083288)
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An observation
If σ(k)(σ(N)) = 2N for some k ∈ {1, 2, . . . ,∞} and N is odd, then

σ(N) = 2spt (3)

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Størmer’s theorem,
and Ljunggren’s theorem on Y 2 + 1 = 2X4 (for a relatively simple
proof, see Steiner and Tzanakis, 1991), we see that qi satisfies (2)
except when

(qi, fi) = (2hipgi − 1, 1) or
(qi, fi) = (2hi − 1, 3) with q2i + 1 = 2p or 2p2.
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Related results

Luca, 2011
For a fixed N ,

xm − 1

x− 1
= N

has at most log1/4+o(1)N solution pairs (x,m).

Y., 2020 (2008)
For each r, there exist only finitely many odd superperfect
numbers N with ω(N) ≤ r or ω(σ(N)) ≤ r.
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Loxton, 1986 proved a weaker version of Luca’s result (1/2
instead of 1/4) using lower bounds for simultaneous linear forms
of logarithms.

Y., 2008 claimed the above result using Baker’s method (lower
bounds for linear forms of logarithms) together with some results
on exponential diophantine equations and a certain
diophantine inequality. After several revisions, this result
appeared in 2020.
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These results are based on the following idea: if values of the

form
xmi
i − 1

xi − 1
are multiplicatively dependent, then, using Baker’s

method, we can show that xi’s cannot be all small.

We depend on this idea again.

114 / 273



These results are based on the following idea: if values of the

form
xmi
i − 1

xi − 1
are multiplicatively dependent, then, using Baker’s

method, we can show that xi’s cannot be all small.

We depend on this idea again.

115 / 273



These results are based on the following idea: if values of the

form
xmi
i − 1

xi − 1
are multiplicatively dependent, then, using Baker’s

method, we can show that xi’s cannot be all small.

We depend on this idea again.

116 / 273



These results are based on the following idea: if values of the

form
xmi
i − 1

xi − 1
are multiplicatively dependent, then, using Baker’s

method, we can show that xi’s cannot be all small.

We depend on this idea again.

117 / 273



Our tools

Ljunggren’s conjecture
The equation

xk − 1

x− 1
= yℓ (4)

with x, y, ℓ ≥ 2 and k ≥ 3 has no solution other than

35 − 1

3− 1
= 112,

183 − 1

18− 1
= 73,

74 − 1

7− 1
= 202. (5)

We use the following result.

Bugeaud and Mignotte, 2002
(4) has no solution other than (5) in the range x ≤ 106.
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Goormaghtigh’s conjecture
The equation

xk − 1

x− 1
=

yℓ − 1

y − 1
(6)

with y > x ≥ 2 and k > ℓ ≥ 3 has no solution other than

25 − 1 =
53 − 1

5− 1
= 31, 213 − 1 =

903 − 1

9− 1
= 8191. (7)

We use the following result.

Bennett, Garbuz, and Marten, 2020
(6) has no solution other than (7) in the range x < y ≤ 105.
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Linear forms in logarithms

Aleksentsev, 2008 applied to the rational case (settings)
Let

a1, . . . , an: rational integers ≥ 2,
b1, . . . , bn: rational integers,

and
Λ = b1 log a1 + · · ·+ bn log an.

Sort ai’s and bi’s in such a way that

|bn| log+ an = max
1≤i≤n

|bi| log+ ai

Moreover, we write log+ x = max{1, log x}.
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Aleksentsev, 2008 applied to the rational case
Then Λ = 0 or

log |Λ| > −C(n) log+ a1 · · · log+ an logB,

where

B = max

{
3, max

1≤i≤n−1

|bi|
log+ an

+
|bn|

log+ ai

}
and

C(n) = 5.3n(n+ 1)(n+ 5)(n+ 8)231.44n
(n+ 1)n

nn+0.5
log(3n).
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We also use the following classical result.

Bang’s theorem
If a and n are integers ≥ 2, then an − 1 has a prime factor dividing
none of am − 1 with 1 ≤ m ≤ n− 1 unless (a, n) = (2, 6) or
(a, n) = (2k − 1, 2) for some integer k ≥ 2.

Now we see that for each divisor d > 2 of si, qdi − 1 has a prime
factor dividing none of qmi − 1 with 1 ≤ m ≤ d− 1. Hence, we
obtain

Corollary

σ(qsi−1
i ) has at least τ(si)− 1 distinct prime factors for any odd

prime qi.
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We begin with

pgi =
qsii − 1

qi − 1
.

From the above Corollary of Bang’s theorem, we see that si must
be a prime factor of p− 1.
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We set
Tk = {qi : si = k} = {qi : fi = k − 1}.

We note that k must be a prime factor of p− 1 whenever Tk is not
empty.
Hence,

qki − 1

qi − 1
= pgi

for qi ∈ Tk.
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Lemma 1
If qi < qj both belong to Tk, then qj > qk−1

i .

Since qj > qi,

pgj =
qkj − 1

qj − 1
>

qki − 1

qi − 1
= pgi

and gj > gi.
Hence,

qkj − 1

qj − 1
≡ qki − 1

qi − 1
≡ 0 (mod pgi) .
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Since every X = qi, q
2
i , . . . , q

k−1
i satisfies

Xk − 1

X − 1
≡ 0 (mod pgi) (8)

and

qi < q2i < · · · < qk−1
i <

qki − 1

qi − 1
= pgi ,

X = qi, q2i , . . . , qk−1
i give all solutions to (8) with 0 ≤ X < pgi .

Hence, qj ≡ qti (mod pgi) for some t with 1 ≤ t ≤ k − 1.
We can easily see that qj ̸= qti and therefore qj > pgi > qk−1

i .
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Lemma 2
For each qi, we have

si < 6.33797× 109 log p log qi(22.4731 + log log p)

and
gi < 6.33797× 109 log2 q(22.4731 + log log p).

The three logarithmic form

Λi = si log qi − log(qi − 1)− gi log p

satisfies

0 < Λi = log
qsii

qsii − 1
<

1

qsii − 1
.
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By Aleksentsev’s bound, we have

log(qsii − 1) = − log Λi < C0(3) log qi log(qi − 1) log p logB0,

where

B0 = max

{
si

log p
+

gi
log qi

,
si

log(qi − 1)
+

gi
log qi

}
.
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From this, we can deduce

si < 6.33797× 109 log p log q(22.4731 + log log p)

and

gi <
si log qi
log p

< 6.33797× 109 log2 q(22.4731 + log log p)

as desired.
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Lemma 3

log p < log(1.2676× 109(22.4731 + log log p) log2 q2)

+ C(4) log2 q1 log
2 q2 logB1,

where

B1 = 8.13571× 1019 log2 q2 log p(22.4731 + log log p)2.

Clearly we have (
qs22 − 1

q2 − 1

)g1

=

(
qs11 − 1

q1 − 1

)g2

.
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We see that

g1

(
s2 log q2 − log(q2 − 1)− log

qs22
qs22 − 1

)
= g2

(
s1 log q1 − log(q1 − 1)− log

qs11
qs11 − 1

)
and, putting

Λ = g1s2 log q2 − g1 log(q2 − 1)− g2s1 log q1 + g2 log(q1 − 1),

we have
0 < |Λ| < g1

qs22 − 1
+

g2
qs11 − 1

<
g1 + g2

p
,

where we note that Λ ̸= 0 since g1s2 ̸= 0.
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From Lemma 2, we have

gi < 6.33797× 109 log2 qi(22.4731 + log log p)

and

0 < |Λ| < 1.2676× 109(22.4731 + log log p) log2 q2
p

.

Now we obtain

− log |Λ| < C(4) log q1 log(q1 − 1) log q2 log(q2 − 1) logB1.

and the Lemma follows.
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We begin by Theorem 1. If p = 2, then qfii must be a Mersenne
prime and

σ(N)

N
<

∏
2ℓ−1:prime

2ℓ

2ℓ − 1
= 1.58555888 · · · .
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If p ≥ exp exp 41.3, then, using Lemma 3,

q2 > log0.2787 p

and, using Rosser-Schoenfeld inequality, we have∏
i≥2,qi<log p

qi
qi − 1

< 3.61,

where we note recent estimates for functions over primes would
give a slightly better estimate.
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Now our concern is to qi’s above log p. For each prime factor k of
p− 1, we write pk for the smallest qi > log p in Tk if it exists. Then,
using Lemma 1, we have

∏
qi>log p,qi∈Tk

qi
qi − 1

≤
∏
j

p
(k−1)j

k

p
(k−1)j

k − 1
< 1 +

1 + 10−8

pk
.

We note that ω(p− 1) < 1.38402 log p/ log log p (Robin, 1983) and

∏
qi>log p

qi
qi − 1

<

(
1 +

1

log p

)1.38402 log p/ log log p

< 1.035.

Hence, we have ∏
i≥2

qi
qi − 1

< 3.737.
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For 2 < p < exp exp 41.3, we use BGM2020 and BM2002 to obtain
q2 > 105. Rosse-Schoenfeld inequality gives∏

i≥2,qi<log p

qi
qi − 1
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105<q<log p

q

q − 1

<
log log p

10 log 5

(
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1
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)(
1 +

1

2(log log p)2

)
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qi − 1
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1 +

1

2 log2(105)
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1 +
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2(log log p)2
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log p

)1.38402 log p/ log log p
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In both cases, if q1 ≥ 17, then

σ(N)

N
< 3.737× q1

q1 − 1
< 4,

which is more than we desired.
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Assume that q1 = 3.
If p ≥ exp exp 39.75, then Lemma 3 gives q2 > log0.28963 p and
therefore ∏

i≥2,qi<log p

qi
qi − 1

< 3.467

and ∏
i≥2

qi
qi − 1

< 3.467× 1.036 < 3.592.

If p < exp exp 39.75, then, like above,∏
i≥2,qi<log p

qi
qi − 1

< 3.592.

In both cases, we have

σ(N)

N
< 3.592× 1.5 < 5.388.
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Similarly, we obtain σ(N)/N < 5 for q1 = 5, 7, 11, 13. This completes
the proof of Theorem 1.
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Proofs of Theorems 2 and 3

Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with
q2 ≥ e45 from Theorem 2 to obtain∏

i≥2

qi
qi − 1

< 1.0686.

If q1 ≥ 37, then σ(N)/N < 1.0686× 37/36 < 1.1, proving Theorem 3.
We note that if q1 ≤ 31 and p ≥ exp exp 46.7, then we must have
σ(qf11 ) = p from BM2002.
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Unsolved problems
(I) For every integer k ≥ 0, are there only finitely many integers

N satisfying σ(k)(σ(N)) = 2N not of the form 2p−1?
(II) For every integer k ≥ 0 and ℓ ≥ 1, are there only finitely many

integers N satisfying σ(k)(σ(ℓ)(N)) = 2N?
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Carl Størmer, Quelques théorèmes sur l’équation de Pell
x2 −Dy2 = ±1 et leurs applications, Skrift. Vidensk. Chris-
tiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.

258 / 273



References (S)

Sándor and Kovács, 2009:
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Carl Størmer, Quelques théorèmes sur l’équation de Pell
x2 −Dy2 = ±1 et leurs applications, Skrift. Vidensk. Chris-
tiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.

261 / 273



References (W-Y2018)

Wall, 1972:
Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer.
Math. Soc. 33 (1972), 39–42.

Y., 2017:
T. Y., Infinitary superperfect numbers, Ann. Math. Inform.
47 (2017), 211–218.

Y., 2018:
T. Y., 2 and 9 are the only biunitary superperfect numbers,
Ann. Univ. Sci. Budapest. Sect. Comp. 48 (2018), 247–
256.

262 / 273



References (W-Y2018)

Wall, 1972:
Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer.
Math. Soc. 33 (1972), 39–42.

Y., 2017:
T. Y., Infinitary superperfect numbers, Ann. Math. Inform.
47 (2017), 211–218.

Y., 2018:
T. Y., 2 and 9 are the only biunitary superperfect numbers,
Ann. Univ. Sci. Budapest. Sect. Comp. 48 (2018), 247–
256.

263 / 273



References (W-Y2018)

Wall, 1972:
Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer.
Math. Soc. 33 (1972), 39–42.

Y., 2017:
T. Y., Infinitary superperfect numbers, Ann. Math. Inform.
47 (2017), 211–218.

Y., 2018:
T. Y., 2 and 9 are the only biunitary superperfect numbers,
Ann. Univ. Sci. Budapest. Sect. Comp. 48 (2018), 247–
256.

264 / 273



References (W-Y2018)

Wall, 1972:
Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer.
Math. Soc. 33 (1972), 39–42.

Y., 2017:
T. Y., Infinitary superperfect numbers, Ann. Math. Inform.
47 (2017), 211–218.

Y., 2018:
T. Y., 2 and 9 are the only biunitary superperfect numbers,
Ann. Univ. Sci. Budapest. Sect. Comp. 48 (2018), 247–
256.

265 / 273



References (W-Y2018)

Wall, 1972:
Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer.
Math. Soc. 33 (1972), 39–42.

Y., 2017:
T. Y., Infinitary superperfect numbers, Ann. Math. Inform.
47 (2017), 211–218.

Y., 2018:
T. Y., 2 and 9 are the only biunitary superperfect numbers,
Ann. Univ. Sci. Budapest. Sect. Comp. 48 (2018), 247–
256.

266 / 273



References (W-Y2018)

Wall, 1972:
Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer.
Math. Soc. 33 (1972), 39–42.

Y., 2017:
T. Y., Infinitary superperfect numbers, Ann. Math. Inform.
47 (2017), 211–218.

Y., 2018:
T. Y., 2 and 9 are the only biunitary superperfect numbers,
Ann. Univ. Sci. Budapest. Sect. Comp. 48 (2018), 247–
256.

267 / 273



References (Y2020-Z)

Y., 2020 (2008):
T. Y., On finiteness of odd superperfect numbers, J.
Th. Nombres Bordeaux 32 (2020), 259–274 (preprint
arXiv:0803.0437).

Zsigmondy, 1882:
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. für
Math. 3 (1882), 265–284.

268 / 273



References (Y2020-Z)

Y., 2020 (2008):
T. Y., On finiteness of odd superperfect numbers, J.
Th. Nombres Bordeaux 32 (2020), 259–274 (preprint
arXiv:0803.0437).

Zsigmondy, 1882:
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. für
Math. 3 (1882), 265–284.

269 / 273



References (Y2020-Z)

Y., 2020 (2008):
T. Y., On finiteness of odd superperfect numbers, J.
Th. Nombres Bordeaux 32 (2020), 259–274 (preprint
arXiv:0803.0437).

Zsigmondy, 1882:
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. für
Math. 3 (1882), 265–284.

270 / 273



References (Y2020-Z)

Y., 2020 (2008):
T. Y., On finiteness of odd superperfect numbers, J.
Th. Nombres Bordeaux 32 (2020), 259–274 (preprint
arXiv:0803.0437).

Zsigmondy, 1882:
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. für
Math. 3 (1882), 265–284.

271 / 273



272 / 273



Tomohiro Yamada
Center for Japanese language and culture
Osaka University
562-8678
3-5-10, Sembahigashi, Minoo, Osaka
Japan
e-mail: tyamada1093@gmail.com

273 / 273


	Introduction
	Our tools
	Proof of the theorem

