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We study arithmetic properties of infegers N satisfying

o(N) =p° M |

for some prime p.
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Factoring N =[], qui with g1 < g2 < --- primes, (1) immediately
yields that
g' —1
qi — 1
for each i, where s; = f; + 1 and g; is a certain positive integer.

= p @

It is conjectured that
@ only (g;, s;) = (3,5) satisfies (2) with g; > 2 and
o (2) with g; = 1 has at most one solution except
25—-1=52+5+1=31
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Factoring N =[], qui with g1 < g2 < --- primes, (1) immediately
yields that
g —1

qi — 1
for each i, where s; = f; + 1 and g; is a certain positive integer.

= p @

It is conjectured that
@ only (g;, s;) = (3,5) satisfies (2) with g; > 2 and
o (2) with g; = 1 has at most one solution except
2> —1=5+5+1=31
but these conjectures are still unsolved (mentioned a little more
later).
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Main results

If o(N') = p° for some prime p, then ¢(N)/N < 5.388.

Theorem 2 (Y.)

If o(N) = p° for some prime p > expexp z;, then ¢z > exp ¢;, where
(23, ¢;) = (42.04,14), (42.31, 15), (42.56, 16), . . ., (46.67, 45), . . .

If o(N) = p° for some prime p > exp exp 46.67, then o(N)/N < 1.1 or
p=o(ql") with ¢; < 31.

V.
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Background

An integer N is called perfect if
o(N) =2N.

It is well known that an integer N is even perfect if and only if
N =2P~1(2P — 1) with 2P — 1 prime.

Unsolved problem
Is there any odd perfect number?
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It is well known that an integer N is even perfect if and only if
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In the Sendai-Hiroshima seven years ago,
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In the Sendai-Hiroshima seven years ago, the speaker introduced
some related notions and problems and the speaker’s results.
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N is called superperfect if
o(a(N)) = 2N.
For example, N = 2P~ ! is superperfect if 27 — 1 is prime since
o(o(2P7h) = o(2P — 1) = 2P.

In fact, it is known that any even superperfect number must have
this form.

Unsolved problem
Is there any odd superperfect number?
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common unitary divisor ged, (d, N/d) = 1.

38 /273



k-ary divisors
@ Adivisor d of N is called a unitary divisor if ged(d, N/d) = 1.
@ A divisor d of N is called a biunitary divisor if the greatest
common unitary divisor ged, (d, N/d) = 1.
@ More generally, we can define recursively.

39/273



k-ary divisors
@ Adivisor d of N is called a unitary divisor if ged(d, N/d) = 1.
@ A divisor d of N is called a biunitary divisor if the greatest
common unitary divisor ged, (d, N/d) = 1.
@ More generally, we can define recursively. A
divisor d of N is called a (k + 1)-ary divisor

40/273



k-ary divisors
@ Adivisor d of N is called a unitary divisor if ged(d, N/d) = 1.
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@ Adivisor d of N is called a unitary divisor if ged(d, N/d) = 1.

@ A divisor d of N is called a biunitary divisor if the greatest
common unitary divisor ged, (d, N/d) = 1.
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k-ary divisors

@ Adivisor d of N is called a unitary divisor if ged(d, N/d) = 1.

@ A divisor d of N is called a biunitary divisor if the greatest
common unitary divisor ged, (d, N/d) = 1.
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k-ary divisors
@ A divisor d of N is called a unitary divisor if ged(d, N/d) = 1.

@ A divisor d of N is called a biunitary divisor if the greatest
common unitary divisor ged, (d, N/d) = 1.

@ More generally, we can define recursively. A
divisor d of N is called a (k + 1)-ary divisor if ged,(d, N/d) = 1.

@ Moreover, it is known that if p™ is a (e — 1)-ary divisor of p¢,
then p™ is a k-ary divisor of p¢ for any k£ > e — 1. A divisor
d=1TI[,p/" of N =T], p;* is called an infinitary divisor if each

7

p* is an infinitary divisor of p*.

The sum of k-ary divisors of N is denoted by o¥)(N) or o***(N)
with & stars.

We note that o*(N) = [;(p;* +1) and, writing e; = okin ...y 9kig,
with k; 1 > --- > k;4, for each i,
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k-ary divisors
@ A divisor d of N is called a unitary divisor if ged(d, N/d) = 1.

@ A divisor d of N is called a biunitary divisor if the greatest
common unitary divisor ged, (d, N/d) = 1.

@ More generally, we can define recursively. A
divisor d of N is called a (k + 1)-ary divisor if ged,(d, N/d) = 1.

@ Moreover, it is known that if p™ is a (e — 1)-ary divisor of p¢,
then p™ is a k-ary divisor of p¢ for any k£ > e — 1. A divisor
d=1TI[,p/" of N =T], p;* is called an infinitary divisor if each

7

p* is an infinitary divisor of p*.

The sum of k-ary divisors of N is denoted by o¥)(N) or o***(N)
with k stars.

We note that o*(N) = [[;(p;* + 1) and, writing e; = okin ...y 9kig,
With kiy > -+ > kyy, foreach i, o)(N) = [1,,(p2 " +1).
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k-ary perfect

@ Unitary perfect: o*(N) = 2N,
6, 60, 90, 87360, 146361946186458562560000 (OEIS: AO02827)
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k-ary perfect

@ Unitary perfect: o*(N) = 2N,
6, 60, 90, 87360, 146361946186458562560000 (OEIS: AO02827)

@ Biunitary perfect: o**(N) = 2N, 6,60, 90

° : o) (V) = 2N,
@ For example, 3-ary perfect: 6, 60, 90, 36720, 47520, . ..
(OEIS:A324707)

@ Infinitary perfect: 6,60, 90, 36720, 12646368, . . . (OEIS:A007357)
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k-ary perfect

@ Unitary perfect: o*(N) = 2N,
6, 60, 90, 87360, 146361946186458562560000 (OEIS: AO02827)

@ Biunitary perfect: o**(N) = 2N, 6,60, 90

° : o) (V) = 2N,
@ For example, 3-ary perfect: 6, 60, 90, 36720, 47520, . ..
(OEIS:A324707)

@ Infinitary perfect: 6,60, 90, 36720, 12646368, . . . (OEIS:A007357)

It is known that there exists no odd k-ary perfect number for
k> 1.
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Unsolved problem

Are there only finitely many even k-ary perfect numbers for each
k?
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Unsolved problem

Are there only finitely many even k-ary perfect numbers for each
k?

The only settled case is k = 2: 6,60, 90 are the only biunitary
perfect numbers (Wall, 1971).
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@ Unitary superperfect:
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k-ary superperfect

@ Unitary superperfect: o*(o*(IN)) = 2N, 2,9,165,238, ...
(OEIS:A038843)

@ Biunitary superperfect: o**(c**(N)) = 2N, 2,9
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k-ary superperfect
@ Unitary superperfect: o*(o*(IN)) = 2N, 2,9,165,238, ...
(OEIS:A038843)
@ Biunitary superperfect: o**(c**(N)) = 2N, 2,9
@ k-ary superperfect: o¥) (a(*)(N)) = 2N,
@ Infinitary superperfect: 2,9

Unsolved problem
Are there any other infinitary superperfect number?

78 /273



https://oeis.org/A038843

79/273




9 is the only odd infinitary superperfect number. I

80/273



9 is the only odd infinitary superperfect number. I

2 and 9 are the only biunitary superperfect numbers,
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9 is the only odd infinitary superperfect number. I

2 and 9 are the only biunitary superperfect numibers, EVEN or
ODD!
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Our motivation
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Hybrid two o*) functions!
@ o*(o(N)) = 2N: 27,63,165,238, and 2P~! with 27 — 1 prime
@ o**(o(N)) = 2N: 2P~ with 22 — 1 prime
@ o(c*(N)) =2N,0(c**(N)) =2N: 2,9

c.f.
@ o*(o(N)) = kN: 1,2,4,8,10,16,24, 27, 30, 54, 63, 64, 108, 126, . . .
(OEIS: A045795)
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Our motivation

Hybrid two o*) functions!
@ o*(o(N)) = 2N: 27,63,165,238, and 2P~! with 27 — 1 prime
@ o**(o(N)) = 2N: 2P~ with 22 — 1 prime
@ o(c*(N)) =2N,0(c**(N)) =2N: 2,9

@ o*(c(N)) = kN: 1,2,4,8,10,16, 24,27, 30, 54, 63, 64,108, 126, . . .
(OEIS: A045795)

@ o(c*(N)) = kN: 2,9,15,18,21, 40,42, 60, 104, 120, 288, 312, 756, . . .
(OEIS: A083288)
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Our motivation

Hybrid two o*) functions!
@ o*(o(N)) = 2N: 27,63,165,238, and 2P~! with 27 — 1 prime
@ o**(o(N)) = 2N: 2P~ with 22 — 1 prime
@ o(c*(N)) =2N,0(c**(N)) =2N: 2,9

@ o*(c(N)) = kN: 1,2,4,8,10,16, 24,27, 30, 54, 63, 64,108, 126, . . .
(OEIS: A045795)

@ o(c*(N)) = kN: 2,9,15,18,21, 40,42, 60, 104, 120, 288, 312, 756, . . .
(OEIS: A083288)

@ Sandor and Kovacs, 2009: N = 2 is the only even integers
satisfying o(c**(N)) = 2N.
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An observation
If o) (oc(N)) = 2N forsome k € {1,2,...,00} and N is odd, then

o(N) = 2%p" 3)

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Stgrmer’s theorem,
and Ljunggren’s theorem on Y2 + 1 = 2X* (for a relatively simple
proof, see Steiner and Tzanakis, 1991), we see that ¢; satisfies (2)
except when

@ (¢, f;) = (2Mp9 —1,1) or

@ (qi, fi) = (2" —1,3) with ¢? + 1 = 2p or 2p?.
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Related results

For a fixed N,

™ —1

r—1

=N

has at most log!/4+°(\) N solution pairs (z, m).

Y., 2020 (2008)

For each r, there exist only finitely many odd superperfect
numbers N with w(N) < r orw(a(N)) <r.
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instead of 1/4) using lower bounds for simultaneous linear forms
of logarithmes.
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bounds for linear forms of logarithms) together with some results
on exponential diophantine equations and a certain
diophantine inequality.
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Loxton, 1986 proved a weaker version of Luca’s result (1/2
instead of 1/4) using lower bounds for simultaneous linear forms
of logarithmes.

Y., 2008 claimed the above result using Baker’s method (lower
bounds for linear forms of logarithms) together with some results
on exponential diophantine equations and a certain
diophantine inequality. After several revisions, this result
appeared in 2020.
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These results are based on the following idea: if values of the

mi _q
form :U;c — are multiplicatively dependent, then, using Baker’s
method, we can show that x;'s cannot be all small.

We depend on this idea again.
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We use the following result.
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Ljunggren’s conjecture
The equation

k _
oLy )
x—1

with z,y, ¢ > 2 and k& > 3 has no solution other than

351

183—1:73 -1
3-1

_ = 2
18 -1 TT-1 20% ©)

=112

We use the following result.

Bugeaud and Mignotte, 2002
(4) has no solution other than (5) in the range = < 10°.
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The equation

-1 yt—1
z—1 y-—1
withy >z >2and k> ¢>3

)
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The equation
-1 yt—1
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with y > 2 > 2 and k > ¢ > 3 has no solution other than

53-1:31T3_1:9m-1

2% 1=
5—1 91

= 8191.
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with y > 2 > 2 and k > ¢ > 3 has no solution other than

53-1:31T3_1:9m-1
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5—1 91

= 8191.
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We use the following result.
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Goormaghtigh’s conjecture

The equation
Wi gf=1
- -7 ©
z—1 y—1
with y > 2 > 2 and k > ¢ > 3 has no solution other than
53 —1 903 — 1
0= = =31,28 1= = 8191. 7
— 31, e 819 ()‘

We use the following result.

Bennett, Garbuz, and Marten, 2020
(6) has no solution other than (7) in the range = < y < 10°.
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Linear forms in logarithms

Aleksentsev, 2008 applied to the rational case (settings)

Let
@ ay,...,ay: rational integers > 2,
@ by,..., b, rational integers,
and

A=bloga; +---+b,loga,.

Sort a;'s and b;’s in such a way that

|bn|log™ a, = max, |bi| log™ a;

Moreover, we write logt x = max{1, log z}.
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where
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Aleksentsev, 2008 applied to the rational case

Then A =0 or

log |A| > —C(n)log™ ay---log™ a, log B,

B:max{S, max o4 I 15| }

1<i<n—1log* a, logt a;

where

and
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Aleksentsev, 2008 applied to the rational case

Then A =0 or

log |A| > —C(n)log™ ay---log™ a, log B,

where
B |bi |bn|
B =max {3, max 4
1<i<n—1log* a, logt a;
and
C(n) =5.3 1)+ 5)(n + 8)231.447 2 D" 1003
(n) = 5.3n(n+1)(n +5)(n + 8)°31.44" =5 log(3n).
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Bang’s theorem

If « and n are integers > 2, then «™ — 1 has a prime factor dividing
none of a™ — 1 with 1 <m < n — 1 unless (a,n) = (2,6) or
(a,n) = (2¥ — 1,2) for some integer k > 2.
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We also use the following classical result.

Bang’s theorem

If « and n are integers > 2, then «™ — 1 has a prime factor dividing
none of a™ — 1 with 1 <m < n — 1 unless (a,n) = (2,6) or
(a,n) = (2¥ — 1,2) for some integer k > 2.

Now we see that for each divisor d > 2 of s;, q;i — 1 has a prime
factor dividing none of ¢/* — 1 with 1 <m < d — 1. Hence, we
obtain

o(¢¥~') has at least 7(s;) — 1 distinct prime factors for any odd
prime g;.
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Diophantine Analysis

We begin with
g —1

¢—1°
From the above Corollary of Bang’s theorem,

P =
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Diophantine Analysis

We begin with

q'—1

¢—1"

From the above Corollary of Bang’s theorem, we see that s; must
be a prime factor of p — 1.

P =
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empty.
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We set
T ={qi:si=k}={q: fi=k—1}.

We note that k must be a prime factor of p — 1 whenever T}, is not

empty.
Hence,

qi — 1 b
for ¢; € Ty.
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If ¢; < g; both belong to Ty, then ¢; > ¢¢ .

Since ¢; > qi.

k

qj_l qf_l_gi
> =p

G —1 q-1

pYi =

and g; > g;.
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If ¢; < ¢; both belong to Ty, then ¢; > ¢* 1.

Since ¢; > qi.
k _ k
pY = > = p¥%
gj—1 -1
and g; > g;.
Hence,

k1 g1
4 =% =0 (mod p%).
-1 q¢-1
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Since every X = ¢;, ¢, ..., qf‘l satisfies

Xk -1
X —1

=0 (mod p%)

and

k
k—1 g —1

2 - i
G <G << < =p?

8
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Since every X = ¢;, ¢, ..., qf‘l satisfies

))(( k__ll =0 (mod p) ®)
and .
Qi<qi2<"'<qf_1<qi7_1=pg",
gi—1
X=q.q ..., ¢F ! give all solutions to (8) with 0 < X < p9.

163/273



Since every X = ¢;, ¢, ..., qf‘l satisfies

f;__ll =0 (mod p%) ®)
and i
G<g@< < l<BTl_ o
g —1
X=q.q ..., ¢F ! give all solutions to (8) with 0 < X < p9.

Hence, ¢; = ¢! (mod p%) forsome t with1 <¢ <k — 1.

164 /273



Since every X = ¢;, ¢, ..., qf‘l satisfies

f;__ll =0 (mod p%) ®)
and i
G<g@< < l<BTl_ o
g —1
X=q.q ..., ¢F ! give all solutions to (8) with 0 < X < p9.

Hence, ¢; = ¢! (mod p%) forsome t with1 <¢ <k — 1.

We can easily see that ¢; # ¢! and therefore ¢; > p% > qf‘l.
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s; < 6.33797 x 10° log plog ¢;(22.4731 + log log p)
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The three logarithmic form
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Lemma 2
For each ¢;, we have

s; < 6.33797 x 10° log plog ¢;(22.4731 + log log p)

and

gi < 6.33797 x 10° log? ¢(22.4731 + loglog p).

The three logarithmic form
A; = silogg; —log(q; — 1) — g;logp

satisfies ,
Si 1
0<A; =1 L < .
1708 ¢'—-1 ¢'—1
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By Aleksentsev’s bound, we have

log(q;* — 1) = —log A; < Cy(3) log g; log(g; — 1) log plog By,
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By Aleksentsev’s bound, we have
log(q;* — 1) = —log A; < Cy(3) log g; log(g; — 1) log plog By,

where

Si gi Sq 9i
By = max { + , + } .
logp  loggq; log(qi—1) logg;
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From this, we can deduce
5; < 6.33797 x 10% log plog q(22.4731 + log log p)

and

s; log g;
< KA ng

og < 6.33797 x 10% log? ¢(22.4731 + log log p)
p

as desired.
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logp < log(1.2676 x 10°(22.4731 + log log p) log? ¢»)
+ C(4) log? 1 log” g log By,

where

B; = 8.13571 x 10'% log? g2 log p(22.4731 + loglog p)*.

180/273



logp < log(1.2676 x 10°(22.4731 + log log p) log? ¢»)
+ C(4) log? 1 log” g log By,

where

B; = 8.13571 x 10'% log? g2 log p(22.4731 + loglog p)*.

Clearly we have
(qu _ 1>91 _ (qiﬁ _ 1)92
G2 —1 qg—1
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We see that

52
q
9 (82 log g2 — log(gz — 1) — log —3* 1)
a3" —

s1
q
= ¢y (sl log g1 —log(q1 — 1) — log Sll 1>
q —
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a3" —

s1
q
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q —
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We see that

52
q
9 (82 log g2 — log(gz — 1) — log —3* 1)
a3" —

s1
q
= ¢y <51 log g1 —log(q1 — 1) — log Sll 1>
q —

and, putting

A = g15210og g2 — g1log(g2 — 1) — gas1log g1 + g2 log(q1 — 1),

we have

+
g1 92 < g1+ g2 ’

A
E o P
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We see that

52
q
g1 (32 log g2 — log(gz — 1) — log —2 )
qy" — 1

s1
q

= ¢y <51 log g1 —log(q1 — 1) — log q811 1>
S1_

and, putting

A = g15210og g2 — g1log(g2 — 1) — gas1log g1 + g2 log(q1 — 1),

we have

+
0<|A|< g1 + 92 <91 92’

¢’ -1 q'—1 P
where we note that A # 0 since g;s2 # 0.
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From Lemma 2, we have
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and
1.2676 x 10°(22.4731 + log log p) log? ¢2

p

0 <Al <
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From Lemma 2, we have
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and

1.2676 x 10°(22.4731 + log log p) log? ¢2

0 <Al <
p

Now we obtain
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From Lemma 2, we have
gi < 6.33797 x 10°log? ¢;(22.4731 + log log p)

and

1.2676 x 10°(22.4731 + log log p) log? ¢2

0 <Al <
p

Now we obtain
—log|A| < C(4)log g1 log(q1 — 1) log g2 log(g2 — 1) log By.

and the Lemma follows.
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We begin by Theorem 1.
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Proof of main results

We begin by Theorem 1. If p = 2, then qifi must be a Mersenne
prime
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Proof of main results

We begin by Theorem 1. If p = 2, then qifi must be a Mersenne
prime and

o(N) 2t
v < Il gr—q =1.58005888- .

2¢—1:prime
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and, using Rosser-Schoenfeld inequality, we have

[I —*5<seL

i>2,:<logp &~
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If p > expexp4l.3, then, using Lemnma 3,

g2 > log0.2787p

and, using Rosser-Schoenfeld inequality, we have

[I —*5<seL

i>2,gi<logp &

where we note recent estimates for functions over primes would
give a slightly better estimate.
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Now our concern is 1o ¢;'s above log p. For each prime factor k of
p — 1, we write p, for the smallest ¢; > logp in T, if it exists. Then,
using Lemma 1, we have

(k—1)J

H 4% - Py, <14 1+10°8
gi—17" (k=1)7 4 P
ai>log p,gi €T i Pg -

We note that w(p — 1) < 1.38402log p/ log log p (Robin, 1983) and

i 1
< |1+
H g —1 ( log p

qi>logp

< 1.035.

> 1.38402log p/ log log p
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Now our concern is 1o ¢;'s above log p. For each prime factor k of
p — 1, we write p, for the smallest ¢; > logp in T, if it exists. Then,
using Lemma 1, we have

k—1)J _
H @ p;(€ ) <14 141078
gi—17" (k=1)7 4 P
ai>log p,gi €T i P -

We note that w(p — 1) < 1.38402log p/ log log p (Robin, 1983) and

i 1
< |1+
H g —1 ( log p

qi>logp

1.38402log p/ log log p
) < 1.035.

Hence, we have

I1-* - < 3.737.
i>2 q; —
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For 2 < p < expexp41.3, we use BGM2020 and BM2002 to obtain
qo > 105,
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For 2 < p < expexp41.3, we use BGM2020 and BM2002 to obtain
g2 > 10°. Rosse-Schoenfeld inequality gives

II -% < II 4%%1

. qi — 1 5
1>2,q;<logp 10°<g<logp

loglog p < 1 ) ( 1 >
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10log5 21log?(10°) 2(loglog p)?
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For 2 < p < expexp41.3, we use BGM2020 and BM2002 to obtain
g2 > 10°. Rosse-Schoenfeld inequality gives

H -Qi < H %1

. qi — 1 5
i>2,q;<logp 10°<g<logp

loglog p < 1 ) ( 1 >
< 1+ 1+ 77—
10log5 21log?(10°) 2(loglog p)?

and, like above,

qi loglogp 1
;—1 = 10log5 210g?(10%) 1+2(10 log p)2
el g og”( g logp
1 1.38402log p/ log log p
1
< 10gp>

< 3.711.
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In both cases, if g1 > 17, then
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In both cases, if g1 > 17, then

o(N) 0

q1 —

< 3.737 x

< 4,

which is more than we desired.
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Assume that ¢; = 3.
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@ If p > expexp39.75, then Lemma 3 gives g, > log??8%%3 p and

therefore 4
[T % <3467
g —1

1>2,q;<logp
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Assume that ¢; = 3.
@ If p > expexp39.75, then Lemma 3 gives ¢, > log?2%9%3 p and

therefore 4
[T % <3467
g —1

1>2,q;<logp

and

T]-—% < 3.467 x 1.036 < 3.592.
isp @1

@ If p < expexp39.75, then, like above,

4i
11 o1 <3502

i>2,q;<logp

@ In both cases, we have
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Assume that ¢; = 3.
@ If p > expexp39.75, then Lemma 3 gives g, > log??8%%3 p and

therefore 4
[T % <3467
g —1

1>2,q;<logp

and

T]-—% < 3.467 x 1.036 < 3.592.
isp @1

@ If p < expexp39.75, then, like above,

4i
11 g <3592

i>2,g;<logp

@ In both cases, we have

o(N)
N

< 3.592 x 1.5 < 5.388.
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Similarly, we obtain o(N)/N < 5 for ¢, =5,7,11,13.

224 /273



Similarly, we obtain o(N)/N < 5 for ¢; = 5,7,11,13. This completes
the proof of Theorem 1.
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Proofs of Theorems 2 and 3

Theorem 2 is a straightforward application of Lemma 3.
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Proofs of Theorems 2 and 3

Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with
g2 > e* from Theorem 2 to obtain

[T < v.o686.
i>2 qi —

If 1 > 37.then o(N)/N < 1.0686 x 37/36 < 1.1, proving Theorem 3.
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Proofs of Theorems 2 and 3

Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with
g2 > e* from Theorem 2 to obtain

[T < v.o686.
i>2 qi —

If 1 > 37.then o(N)/N < 1.0686 x 37/36 < 1.1, proving Theorem 3.
We note that if ¢ < 31 and p > expexp 46.7, then we must have
o(ql") = p from BM2002,
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Unsolved problems
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Unsolved problems

(I) For every integer k > 0, are there only finitely many integers
N satisfying o) (¢(N)) = 2N not of the form 27~1?
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Unsolved problems

(I) For every integer k > 0, are there only finitely many integers
N satisfying o) (¢(N)) = 2N not of the form 27~1?

() Foreveryintegerk >0and ¢>1,
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Unsolved problems

(I) For every integer k > 0, are there only finitely many integers
N satisfying o) (¢(N)) = 2N not of the form 27~1?

(1) For every integer k > 0 and ¢ > 1, are there only finitely many
integers N satisfying o®) (¢ (N)) = 2N?
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