Integers whose sum of divisors is a prime power

Tomohiro Yamada (CJLC, Osaka University)

Jul. 12. 2024 (revised)

As usual, let

- $\sigma(N)$: the sum of divisors of N,
- $\omega(n)$: the number of distinct prime factors of n,
- $\tau(n)$: the number of divisors of n.

We study arithmetic properties of integers N satisfying

$$\sigma(N) = p^e$$

for some prime p.

As usual, let

• $\sigma(N)$: the sum of divisors of N,

• $\omega(n)$: the number of distinct prime factors of n,

• $\tau(n)$: the number of divisors of n.

We study arithmetic properties of integers N satisfying

$$\sigma(N) = p^e$$

for some prime p.

As usual, let

- $\sigma(N)$: the sum of divisors of N,
- $\omega(n)$: the number of distinct prime factors of n,
- $\tau(n)$: the number of divisors of n.

We study arithmetic properties of integers N satisfying

$$\sigma(N) = p^e$$

for some prime p.

As usual, let

- $\sigma(N)$: the sum of divisors of N,
- $\omega(n)$: the number of distinct prime factors of n,
- $\tau(n)$: the number of divisors of n.

We study arithmetic properties of integers N satisfying

$$\sigma(N) = p^e$$

for some prime p.

As usual, let

- $\sigma(N)$: the sum of divisors of N,
- $\omega(n)$: the number of distinct prime factors of n,
- $\tau(n)$: the number of divisors of n.

We study arithmetic properties of integers N satisfying

$$\sigma(N) = p^e \tag{1}$$

for some prime p.

$$\frac{q_i^{s_i} - 1}{q_i - 1} = p^{g_i} \tag{2}$$

for each i, where $s_i = f_i + 1$ and g_i is a certain positive integer.

It is conjectured that

- only $(q_i, s_i) = (3, 5)$ satisfies (2) with $g_i \ge 2$ and
- (2) with $g_i = 1$ has at most one solution except $2^5 1 = 5^2 + 5 + 1 = 31$

$$\frac{q_i^{s_i} - 1}{q_i - 1} = p^{g_i} \tag{2}$$

for each *i*, where $s_i = f_i + 1$ and g_i is a certain positive integer.

It is conjectured that

- only $(q_i, s_i) = (3, 5)$ satisfies (2) with $g_i \ge 2$ and
- (2) with $g_i = 1$ has at most one solution except $2^5 1 = 5^2 + 5 + 1 = 31$

$$\frac{q_i^{s_i} - 1}{q_i - 1} = p^{g_i} \tag{2}$$

for each *i*, where $s_i = f_i + 1$ and g_i is a certain positive integer.

It is conjectured that

- only $(q_i, s_i) = (3, 5)$ satisfies (2) with $g_i \ge 2$ and
- (2) with $g_i = 1$ has at most one solution except $2^5 1 = 5^2 + 5 + 1 = 31$

$$\frac{q_i^{s_i} - 1}{q_i - 1} = p^{g_i} \tag{2}$$

for each *i*, where $s_i = f_i + 1$ and g_i is a certain positive integer.

It is conjectured that

• only $(q_i, s_i) = (3, 5)$ satisfies (2) with $g_i \ge 2$ and

• (2) with $g_i = 1$ has at most one solution except $2^5 - 1 = 5^2 + 5 + 1 = 31$

$$\frac{q_i^{s_i} - 1}{q_i - 1} = p^{g_i} \tag{2}$$

for each *i*, where $s_i = f_i + 1$ and g_i is a certain positive integer.

It is conjectured that

• only $(q_i, s_i) = (3, 5)$ satisfies (2) with $g_i \ge 2$ and

• (2) with $g_i = 1$ has at most one solution except $2^5 - 1 = 5^2 + 5 + 1 = 31$

$$\frac{q_i^{s_i} - 1}{q_i - 1} = p^{g_i} \tag{2}$$

for each *i*, where $s_i = f_i + 1$ and g_i is a certain positive integer.

It is conjectured that

- only $(q_i, s_i) = (3, 5)$ satisfies (2) with $g_i \ge 2$ and
- (2) with $g_i = 1$ has at most one solution except $2^5 1 = 5^2 + 5 + 1 = 31$

$$\frac{q_i^{s_i} - 1}{q_i - 1} = p^{g_i} \tag{2}$$

for each *i*, where $s_i = f_i + 1$ and g_i is a certain positive integer.

It is conjectured that

- only $(q_i, s_i) = (3, 5)$ satisfies (2) with $g_i \ge 2$ and
- (2) with $g_i = 1$ has at most one solution except $2^5 1 = 5^2 + 5 + 1 = 31$

Theorem 1 (Y.)

If $\sigma(N) = p^e$ for some prime p, then $\sigma(N)/N < 5.388$.

Theorem 2 (Y.)

If $\sigma(N) = p^e$ for some prime $p \ge \exp \exp x_i$, then $q_2 > \exp c_i$, where $(x_i, c_i) = (42.04, 14), (42.31, 15), (42.56, 16), \dots, (46.67, 45), \dots$

Theorem 3 (Y.)

Theorem 1 (Y.)

If $\sigma(N) = p^e$ for some prime p, then $\sigma(N)/N < 5.388$.

Theorem 2 (Y.)

If $\sigma(N) = p^e$ for some prime $p \ge \exp \exp x_i$, then $q_2 > \exp c_i$, where $(x_i, c_i) = (42.04, 14), (42.31, 15), (42.56, 16), \dots, (46.67, 45), \dots$

Theorem 3 (Y.)

Theorem 1 (Y.)

If $\sigma(N) = p^e$ for some prime p, then $\sigma(N)/N < 5.388$.

Theorem 2 (Y.)

If $\sigma(N) = p^e$ for some prime $p \ge \exp \exp x_i$, then $q_2 > \exp c_i$, where $(x_i, c_i) = (42.04, 14), (42.31, 15), (42.56, 16), \dots, (46.67, 45), \dots$

Theorem 3 (Y.)

Theorem 1 (Y.)

If $\sigma(N) = p^e$ for some prime p, then $\sigma(N)/N < 5.388$.

Theorem 2 (Y.)

If $\sigma(N) = p^e$ for some prime $p \ge \exp \exp x_i$, then $q_2 > \exp c_i$, where $(x_i, c_i) = (42.04, 14), (42.31, 15), (42.56, 16), \dots, (46.67, 45), \dots$

Theorem 3 (Y.)

Theorem 1 (Y.)

If $\sigma(N) = p^e$ for some prime p, then $\sigma(N)/N < 5.388$.

Theorem 2 (Y.)

If $\sigma(N) = p^e$ for some prime $p \ge \exp \exp x_i$, then $q_2 > \exp c_i$, where $(x_i, c_i) = (42.04, 14), (42.31, 15), (42.56, 16), \dots, (46.67, 45), \dots$

Theorem 3 (Y.)

Theorem 1 (Y.)

If $\sigma(N) = p^e$ for some prime p, then $\sigma(N)/N < 5.388$.

Theorem 2 (Y.)

If $\sigma(N) = p^e$ for some prime $p \ge \exp \exp x_i$, then $q_2 > \exp c_i$, where $(x_i, c_i) = (42.04, 14), (42.31, 15), (42.56, 16), \dots, (46.67, 45), \dots$

Theorem 3 (Y.)

Theorem 1 (Y.)

If $\sigma(N) = p^e$ for some prime p, then $\sigma(N)/N < 5.388$.

Theorem 2 (Y.)

If $\sigma(N) = p^e$ for some prime $p \ge \exp \exp x_i$, then $q_2 > \exp c_i$, where $(x_i, c_i) = (42.04, 14), (42.31, 15), (42.56, 16), \dots, (46.67, 45), \dots$

Theorem 3 (Y.)

An integer N is called perfect if

 $\sigma(N) = 2N.$

It is well known that an integer N is even perfect if and only if $N = 2^{p-1}(2^p - 1)$ with $2^p - 1$ prime.

Unsolved problem

Is there any odd perfect number?

An integer N is called perfect if

 $\sigma(N) = 2N.$

It is well known that an integer N is even perfect if and only if $N = 2^{p-1}(2^p - 1)$ with $2^p - 1$ prime.

Unsolved problem

Is there any odd perfect number?

An integer N is called perfect if

 $\sigma(N) = 2N.$

It is well known that an integer N is even perfect if and only if $N = 2^{p-1}(2^p - 1)$ with $2^p - 1$ prime.

Unsolved problem

Is there any odd perfect number?

An integer N is called perfect if

 $\sigma(N) = 2N.$

It is well known that an integer N is even perfect if and only if $N = 2^{p-1}(2^p - 1)$ with $2^p - 1$ prime.

Unsolved problem

Is there any odd perfect number?

An integer N is called perfect if

 $\sigma(N) = 2N.$

It is well known that an integer N is even perfect if and only if $N = 2^{p-1}(2^p - 1)$ with $2^p - 1$ prime.

Unsolved problem

Is there any odd perfect number?

In the Sendai-Hiroshima seven years ago, the speaker introduced some related notions and problems and the speaker's results.

In the Sendai-Hiroshima seven years ago, the speaker introduced some related notions and problems and the speaker's results.

 $\sigma(\sigma(N)) = 2N.$

For example, $N = 2^{p-1}$ is superperfect if $2^p - 1$ is prime since

$$\sigma(\sigma(2^{p-1})) = \sigma(2^p - 1) = 2^p.$$

In fact, it is known that any even superperfect number must have this form.

Unsolved problem

Is there any odd superperfect number?

 $\sigma(\sigma(N)) = 2N.$

For example, $N = 2^{p-1}$ is superperfect if $2^p - 1$ is prime since

$$\sigma(\sigma(2^{p-1})) = \sigma(2^p - 1) = 2^p.$$

In fact, it is known that any even superperfect number must have this form.

Unsolved problem

Is there any odd superperfect number?

$$\sigma(\sigma(N)) = 2N.$$

For example, $N = 2^{p-1}$ is superperfect if $2^p - 1$ is prime since

$$\sigma(\sigma(2^{p-1})) = \sigma(2^p - 1) = 2^p.$$

In fact, it is known that any even superperfect number must have this form.

Unsolved problem

Is there any odd superperfect number?

$$\sigma(\sigma(N)) = 2N.$$

For example, $N = 2^{p-1}$ is superperfect if $2^p - 1$ is prime since

$$\sigma(\sigma(2^{p-1})) = \sigma(2^p - 1) = 2^p.$$

In fact, it is known that any even superperfect number must have this form.

Unsolved problem

Is there any odd superperfect number?

$$\sigma(\sigma(N)) = 2N.$$

For example, $N = 2^{p-1}$ is superperfect if $2^p - 1$ is prime since

$$\sigma(\sigma(2^{p-1})) = \sigma(2^p - 1) = 2^p.$$

In fact, it is known that any even superperfect number must have this form.

Unsolved problem

Is there any odd superperfect number?

k-ary divisors

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

k-ary divisors

• A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.

- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

k-ary divisors

• A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.

- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars.

We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \dots + 2^{k_{i,t_i}}$ with $k_{i,1} > \dots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars.

We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$

with $k_{i,1} > \cdots > k_{i,t_i}$ for each i, $\sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{\kappa_{i,j}}} + 1)$

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars. We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i=i} (p_i^{2^{k_{i,j}}} + 1)$.

- A divisor d of N is called a unitary divisor if gcd(d, N/d) = 1.
- A divisor d of N is called a biunitary divisor if the greatest common unitary divisor $gcd_1(d, N/d) = 1$.
- More generally, we can define k-ary divisor recursively. A divisor d of N is called a (k + 1)-ary divisor if $gcd_k(d, N/d) = 1$.
- Moreover, it is known that if p^m is a (e-1)-ary divisor of p^e , then p^m is a k-ary divisor of p^e for any $k \ge e-1$. A divisor $d = \prod_i p_i^{m_i}$ of $N = \prod_i p_i^{e_i}$ is called an infinitary divisor if each $p_i^{m_i}$ is an infinitary divisor of $p_i^{e_i}$.

The sum of k-ary divisors of N is denoted by $\sigma^{(k)}(N)$ or $\sigma^{**\cdots*}(N)$ with k stars.

We note that $\sigma^*(N) = \prod_i (p_i^{e_i} + 1)$ and, writing $e_i = 2^{k_{i,1}} + \cdots + 2^{k_{i,t_i}}$ with $k_{i,1} > \cdots > k_{i,t_i}$ for each $i, \sigma^{(\infty)}(N) = \prod_{i,j} (p_i^{2^{k_{i,j}}} + 1)$.

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

• Unitary perfect: $\sigma^*(N) = 2N$,

6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)

- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6, 60, 90, 36720, 12646368, ... (OEIS: <u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- k-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6, 60, 90, 36720, 12646368, ... (OEIS: <u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- k-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ... (OEIS:<u>A324707</u>)
- Infinitary perfect: 6, 60, 90, 36720, 12646368, ... (OEIS: <u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6, 60, 90, 36720, 12646368, ... (OEIS: <u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6,60,90,36720,12646368,... (OEIS:<u>A007357</u>)

- Unitary perfect: $\sigma^*(N) = 2N$, 6, 60, 90, 87360, 146361946186458562560000 (OEIS: <u>A002827</u>)
- Biunitary perfect: $\sigma^{**}(N) = 2N$, 6, 60, 90
- *k*-ary perfect: $\sigma^{(k)}(N) = 2N$.
- For example, 3-ary perfect: 6, 60, 90, 36720, 47520, ...
 (OEIS:<u>A324707</u>)
- Infinitary perfect: 6, 60, 90, 36720, 12646368, ... (OEIS:<u>A007357</u>)

Unsolved problem

Are there only finitely many even k-ary perfect numbers for each k?

The only settled case is k = 2: 6, 60, 90 are the only biunitary perfect numbers (Wall, 1971).

Unsolved problem

Are there only finitely many even k-ary perfect numbers for each k?

The only settled case is k = 2: 6, 60, 90 are the only biunitary perfect numbers (Wall, 1971).

Unsolved problem

Are there only finitely many even k-ary perfect numbers for each k?

The only settled case is k = 2: 6,60,90 are the only biunitary perfect numbers (Wall, 1971).

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

- Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2, 9
- k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

• Infinitary superperfect: 2,9

Unsolved problem

Are there any other infinitary superperfect number?

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

- Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2, 9
- k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

• Infinitary superperfect: 2,9

Unsolved problem

Are there any other infinitary superperfect number?

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

- Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2, 9
- k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

Infinitary superperfect: 2,9

Unsolved problem

Are there any other infinitary superperfect number?

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

- Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2, 9
- k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.
- Infinitary superperfect: 2,9

Unsolved problem

Are there any other infinitary superperfect number?

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

• Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2, 9

• k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

Infinitary superperfect: 2,9

Unsolved problem

Are there any other infinitary superperfect number?

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

• Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2,9

• k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

Infinitary superperfect: 2,9

Unsolved problem

Are there any other infinitary superperfect number?

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

• Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2,9

• k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

• Infinitary superperfect: 2,9

Unsolved problem

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

- Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2,9
- k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

Infinitary superperfect: 2,9

Unsolved problem

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

- Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2,9
- k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

Infinitary superperfect: 2,9

Unsolved problem

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

- Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2,9
- k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

Infinitary superperfect: 2,9

Unsolved problem

• Unitary superperfect: $\sigma^*(\sigma^*(N)) = 2N, 2, 9, 165, 238, ...$ (OEIS:<u>A038843</u>)

- Biunitary superperfect: $\sigma^{**}(\sigma^{**}(N)) = 2N$, 2,9
- k-ary superperfect: $\sigma^{(k)}(\sigma^{(k)}(N)) = 2N$.

Infinitary superperfect: 2,9

Unsolved problem

9 is the only odd infinitary superperfect number.

Y., 2018

 $2 \mbox{ and } 9 \mbox{ are the only biunitary superperfect numbers, EVEN or ODD! }$

9 is the only odd infinitary superperfect number.

Y., 2018

 $2 \mbox{ and } 9 \mbox{ are the only biunitary superperfect numbers, EVEN or ODD! }$

9 is the only odd infinitary superperfect number.

Y., 2018

 $2 \mbox{ and } 9$ are the only biunitary superperfect numbers, EVEN or ODD!

9 is the only odd infinitary superperfect number.

Y., 2018

 $2 \mbox{ and } 9$ are the only biunitary superperfect numbers, EVEN or ODD!

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N: 2^{p-1}$ with $2^p 1$ prime
- $\sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N$: 2,9

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

• $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p - 1$ prime

- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N: 2, 9$

C.f.

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, ... (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N$: 2,9

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N: 2^{p-1}$ with $2^p 1$ prime
- $\sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N: 2, 9$

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N: 2, 9$

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N: 2^{p-1}$ with $2^p 1$ prime
- $\sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N$: 2,9

C.f.

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N: 2^{p-1}$ with $2^p 1$ prime
- $\sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N$: 2,9

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\bullet \ \sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N : 2,9$

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\bullet \ \sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N : 2,9$

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, ... (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N$: 2,9

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\bullet \ \sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N : 2,9$

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, ... (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\bullet \ \sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N : 2,9$

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, . . . (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

Hybrid two $\sigma^{(k)}$ functions!

- $\sigma^*(\sigma(N)) = 2N$: 27, 63, 165, 238, and 2^{p-1} with $2^p 1$ prime
- $\sigma^{**}(\sigma(N)) = 2N$: 2^{p-1} with $2^p 1$ prime
- $\bullet \ \sigma(\sigma^*(N)) = 2N, \sigma(\sigma^{**}(N)) = 2N : 2,9$

- $\sigma^*(\sigma(N)) = kN$: 1, 2, 4, 8, 10, 16, 24, 27, 30, 54, 63, 64, 108, 126, . . . (OEIS: <u>A045795</u>)
- $\sigma(\sigma^*(N)) = kN$: 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, . . . (OEIS: <u>A083288</u>)
- Sándor and Kovács, 2009: N = 2 is the only even integers satisfying $\sigma(\sigma^{**}(N)) = 2N$.

If $\sigma^{(k)}(\sigma(N)) = 2N$ for some $k \in \{1, 2, ..., \infty\}$ and N is odd, then

$$\sigma(N) = 2^s p^t$$

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Størmer's theorem, and Ljunggren's theorem on $Y^2 + 1 = 2X^4$ (for a relatively simple proof, see Steiner and Tzanakis, 1991), we see that q_i satisfies (2) except when

•
$$(q_i, f_i) = (2^{h_i} p^{g_i} - 1, 1)$$
 or

• $(q_i, f_i) = (2^{h_i} - 1, 3)$ with $q_i^2 + 1 = 2p$ or $2p^2$.

If $\sigma^{(k)}(\sigma(N)) = 2N$ for some $k \in \{1, 2, ..., \infty\}$ and N is odd, then $\sigma(N) = 2^{s} p^{t}$ (3)

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Størmer's theorem, and Ljunggren's theorem on $Y^2 + 1 = 2X^4$ (for a relatively simple proof, see Steiner and Tzanakis, 1991), we see that q_i satisfies (2) except when

•
$$(q_i, f_i) = (2^{h_i} p^{g_i} - 1, 1)$$
 or

• $(q_i, f_i) = (2^{h_i} - 1, 3)$ with $q_i^2 + 1 = 2p$ or $2p^2$.

If $\sigma^{(k)}(\sigma(N)) = 2N$ for some $k \in \{1, 2, \dots, \infty\}$ and N is odd, then

$$\sigma(N) = 2^s p^t \tag{3}$$

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Størmer's theorem, and Ljunggren's theorem on $Y^2 + 1 = 2X^4$ (for a relatively simple proof, see Steiner and Tzanakis, 1991), we see that q_i satisfies (2) except when

•
$$(q_i, f_i) = (2^{h_i} p^{g_i} - 1, 1)$$
 or

• $(q_i, f_i) = (2^{h_i} - 1, 3)$ with $q_i^2 + 1 = 2p$ or $2p^2$.

If $\sigma^{(k)}(\sigma(N)) = 2N$ for some $k \in \{1, 2, ..., \infty\}$ and N is odd, then

$$\sigma(N) = 2^s p^t \tag{3}$$

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Størmer's theorem, and Ljunggren's theorem on $Y^2 + 1 = 2X^4$ (for a relatively simple proof, see Steiner and Tzanakis, 1991), we see that q_i satisfies (2) except when

- $(q_i, f_i) = (2^{h_i} p^{g_i} 1, 1)$ or
- $(q_i, f_i) = (2^{h_i} 1, 3)$ with $q_i^2 + 1 = 2p$ or $2p^2$.

If $\sigma^{(k)}(\sigma(N)) = 2N$ for some $k \in \{1, 2, ..., \infty\}$ and N is odd, then

$$\sigma(N) = 2^s p^t \tag{3}$$

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Størmer's theorem, and Ljunggren's theorem on $Y^2 + 1 = 2X^4$ (for a relatively simple proof, see Steiner and Tzanakis, 1991), we see that q_i satisfies (2) except when

- $(q_i, f_i) = (2^{h_i} p^{g_i} 1, 1)$ or
- $(q_i, f_i) = (2^{h_i} 1, 3)$ with $q_i^2 + 1 = 2p$ or $2p^2$.

If $\sigma^{(k)}(\sigma(N)) = 2N$ for some $k \in \{1, 2, ..., \infty\}$ and N is odd, then

$$\sigma(N) = 2^s p^t \tag{3}$$

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Størmer's theorem, and Ljunggren's theorem on $Y^2 + 1 = 2X^4$ (for a relatively simple proof, see Steiner and Tzanakis, 1991), we see that q_i satisfies (2) except when

•
$$(q_i, f_i) = (2^{h_i} p^{g_i} - 1, 1)$$
 or

• $(q_i, f_i) = (2^{h_i} - 1, 3)$ with $q_i^2 + 1 = 2p$ or $2p^2$.

If $\sigma^{(k)}(\sigma(N)) = 2N$ for some $k \in \{1, 2, ..., \infty\}$ and N is odd, then

$$\sigma(N) = 2^s p^t \tag{3}$$

for an odd prime p and integers s, t.

With the aid of Bang-Zsigmondy theorem, Størmer's theorem, and Ljunggren's theorem on $Y^2 + 1 = 2X^4$ (for a relatively simple proof, see Steiner and Tzanakis, 1991), we see that q_i satisfies (2) except when

•
$$(q_i, f_i) = (2^{h_i} p^{g_i} - 1, 1)$$
 or

•
$$(q_i, f_i) = (2^{h_i} - 1, 3)$$
 with $q_i^2 + 1 = 2p$ or $2p^2$.

Luca, 2011

For a fixed N,

$$\frac{x^m - 1}{x - 1} = N$$

has at most $\log^{1/4+o(1)} N$ solution pairs (x, m).

Y., 2020 (2008)

For each r, there exist only finitely many odd superperfect numbers N with $\omega(N) \leq r$ or $\omega(\sigma(N)) \leq r.$

Luca, 2011

For a fixed N,

$$\frac{x^m - 1}{x - 1} = N$$

has at most $\log^{1/4+o(1)} N$ solution pairs (x, m).

Y., 2020 (2008)

For each r, there exist only finitely many odd superperfect numbers N with $\omega(N) \leq r$ or $\omega(\sigma(N)) \leq r.$

Luca, 2011

For a fixed N,

$$\frac{x^m - 1}{x - 1} = N$$

has at most $\log^{1/4+o(1)} N$ solution pairs (x, m).

Y., 2020 (2008)

For each r, there exist only finitely many odd superperfect numbers N with $\omega(N) \leq r$ or $\omega(\sigma(N)) \leq r.$

Luca, 2011

For a fixed N,

$$\frac{x^m - 1}{x - 1} = N$$

has at most $\log^{1/4+o(1)} N$ solution pairs (x,m).

Y., 2020 (2008)

For each r, there exist only finitely many odd superperfect numbers N with $\omega(N) \leq r$ or $\omega(\sigma(N)) \leq r.$

Luca, 2011

For a fixed N,

$$\frac{x^m - 1}{x - 1} = N$$

has at most $\log^{1/4+o(1)} N$ solution pairs (x, m).

Y., 2020 (2008)

For each r, there exist only finitely many odd superperfect numbers N with $\omega(N) \leq r$ or $\omega(\sigma(N)) \leq r$.

Luca, 2011

For a fixed N,

$$\frac{x^m - 1}{x - 1} = N$$

has at most $\log^{1/4+o(1)} N$ solution pairs (x,m).

Y., 2020 (2008)

For each r, there exist only finitely many odd superperfect numbers N with $\omega(N) \leq r$ or $\omega(\sigma(N)) \leq r$.

These results are based on the following idea: if values of the form $\frac{x_i^{m_i} - 1}{x_i - 1}$ are multiplicatively dependent, then, using Baker's method, we can show that x_i 's cannot be all small.

We depend on this idea again.

These results are based on the following idea: if values of the form $\frac{x_i^{m_i}-1}{x_i-1}$ are multiplicatively dependent, then, using Baker's method, we can show that x_i 's cannot be all small.

We depend on this idea again.

These results are based on the following idea: if values of the form $\frac{x_i^{m_i} - 1}{x_i - 1}$ are multiplicatively dependent, then, using Baker's method, we can show that x_i 's cannot be all small.

We depend on this idea again.

These results are based on the following idea: if values of the form $\frac{x_i^{m_i} - 1}{x_i - 1}$ are multiplicatively dependent, then, using Baker's method, we can show that x_i 's cannot be all small.

We depend on this idea again.

Ljunggren's conjecture

The equation

$$\frac{x^k - 1}{x - 1} = y^\ell \tag{4}$$

with $x,y,\ell\geq 2$ and $k\geq 3$ has no solution other than

$$\frac{3^5 - 1}{3 - 1} = 11^2, \frac{18^3 - 1}{18 - 1} = 7^3, \frac{7^4 - 1}{7 - 1} = 20^2.$$

We use the following result.

Bugeaud and Mignotte, 2002

(4) has no solution other than (5) in the range $x \le 10^6$.

Ljunggren's conjecture

The equation

$$\frac{x^k - 1}{x - 1} = y^\ell$$

with $x, y, \ell \geq 2$ and $k \geq 3$ has no solution other than

$$\frac{3^5 - 1}{3 - 1} = 11^2, \frac{18^3 - 1}{18 - 1} = 7^3, \frac{7^4 - 1}{7 - 1} = 20^2.$$

We use the following result.

Bugeaud and Mignotte, 2002

(4) has no solution other than (5) in the range $x \le 10^6$.

Ljunggren's conjecture

The equation

$$\frac{x^k - 1}{x - 1} = y^\ell \tag{6}$$

with $x, y, \ell \geq 2$ and $k \geq 3$ has no solution other than

$$\frac{3^5 - 1}{3 - 1} = 11^2, \frac{18^3 - 1}{18 - 1} = 7^3, \frac{7^4 - 1}{7 - 1} = 20^2.$$

We use the following result.

Bugeaud and Mignotte, 2002

(4) has no solution other than (5) in the range $x \le 10^6$.

120/273

(4)

Ljunggren's conjecture

The equation

$$\frac{x^k - 1}{x - 1} = y^\ell \tag{4}$$

with $x,y,\ell\geq 2$ and $k\geq 3$ has no solution other than

$$\frac{3^5 - 1}{3 - 1} = 11^2, \frac{18^3 - 1}{18 - 1} = 7^3, \frac{7^4 - 1}{7 - 1} = 20^2.$$
 (5)

We use the following result.

Bugeaud and Mignotte, 2002 (4) has no solution other than (5) in the range $x \leq$

Ljunggren's conjecture

The equation

$$\frac{x^k - 1}{x - 1} = y^\ell \tag{4}$$

with $x,y,\ell\geq 2$ and $k\geq 3$ has no solution other than

$$\frac{3^5 - 1}{3 - 1} = 11^2, \frac{18^3 - 1}{18 - 1} = 7^3, \frac{7^4 - 1}{7 - 1} = 20^2.$$
 (5)

We use the following result.

Bugeaud and Mignotte, 2002 (4) has no solution other than (5) in the range x < x

Ljunggren's conjecture

The equation

$$\frac{x^k - 1}{x - 1} = y^\ell \tag{4}$$

with $x,y,\ell\geq 2$ and $k\geq 3$ has no solution other than

$$\frac{3^5 - 1}{3 - 1} = 11^2, \frac{18^3 - 1}{18 - 1} = 7^3, \frac{7^4 - 1}{7 - 1} = 20^2.$$
 (5)

We use the following result.

Bugeaud and Mignotte, 2002 (4) has no solution other than (5) in the range $x \le 10^6$.

The equation

$$\frac{x^k - 1}{x - 1} = \frac{y^\ell - 1}{y - 1} \tag{6}$$

with $y > x \ge 2$ and $k > \ell \ge 3$ has no solution other than

$$2^{5} - 1 = \frac{5^{3} - 1}{5 - 1} = 31, 2^{13} - 1 = \frac{90^{3} - 1}{9 - 1} = 8191.$$

We use the following result.

Bennett, Garbuz, and Marten, 2020 (6) has no solution other than (7) in the range $x < y \leq 10$

The equation

$$\frac{x^k - 1}{x - 1} = \frac{y^\ell - 1}{y - 1} \tag{6}$$

with $y > x \ge 2$ and $k > \ell \ge 3$ has no solution other than

$$2^{5} - 1 = \frac{5^{3} - 1}{5 - 1} = 31, 2^{13} - 1 = \frac{90^{3} - 1}{9 - 1} = 8191.$$

We use the following result.

Bennett, Garbuz, and Marten, 2020 (6) bas no solution other than (7) in the range x < y

The equation

$$\frac{x^k - 1}{x - 1} = \frac{y^\ell - 1}{y - 1} \tag{6}$$

with $y > x \ge 2$ and $k > \ell \ge 3$ has no solution other than

$$2^{5} - 1 = \frac{5^{3} - 1}{5 - 1} = 31, 2^{13} - 1 = \frac{90^{3} - 1}{9 - 1} = 8191.$$
 (7)

We use the following result.

Bennett, Garbuz, and Marten, 2020

(6) has no solution other than (7) in the range $x < y \leq 10^5$.

The equation

$$\frac{x^k - 1}{x - 1} = \frac{y^\ell - 1}{y - 1} \tag{6}$$

with $y > x \ge 2$ and $k > \ell \ge 3$ has no solution other than

$$2^{5} - 1 = \frac{5^{3} - 1}{5 - 1} = 31, 2^{13} - 1 = \frac{90^{3} - 1}{9 - 1} = 8191.$$

We use the following result.

Bennett, Garbuz, and Marten, 2020 (6) has no solution other than (7) in the range $x < y \le 10^5$.

127 / 273

(7

The equation

$$\frac{x^k - 1}{x - 1} = \frac{y^\ell - 1}{y - 1} \tag{6}$$

with $y > x \ge 2$ and $k > \ell \ge 3$ has no solution other than

$$2^{5} - 1 = \frac{5^{3} - 1}{5 - 1} = 31, 2^{13} - 1 = \frac{90^{3} - 1}{9 - 1} = 8191.$$

We use the following result.

Bennett, Garbuz, and Marten, 2020

(6) has no solution other than (7) in the range $x < y \le 10^5$.

128/273

(/

Aleksentsev, 2008 applied to the rational case (settings)

Let

- a_1, \ldots, a_n : rational integers ≥ 2 ,
- b_1, \ldots, b_n : rational integers,

and

$$\Lambda = b_1 \log a_1 + \dots + b_n \log a_n.$$

Sort a_i 's and b_i 's in such a way that

$$|b_n|\log^+ a_n = \max_{1 \le i \le n} |b_i|\log^+ a_i$$

Moreover, we write $\log^+ x = \max\{1, \log x\}$.

Aleksentsev, 2008 applied to the rational case (settings)

Let

- a_1, \ldots, a_n : rational integers ≥ 2 ,
- b_1, \ldots, b_n : rational integers,

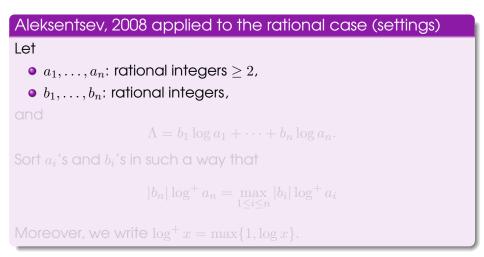
and

$$\Lambda = b_1 \log a_1 + \dots + b_n \log a_n.$$

Sort a_i 's and b_i 's in such a way that

$$|b_n|\log^+ a_n = \max_{1 \le i \le n} |b_i|\log^+ a_i$$

Moreover, we write $\log^+ x = \max\{1, \log x\}$.



Aleksentsev, 2008 applied to the rational case (settings)

Let

- a_1, \ldots, a_n : rational integers ≥ 2 ,
- b_1, \ldots, b_n : rational integers,

and

$$\Lambda = b_1 \log a_1 + \dots + b_n \log a_n.$$

Sort a_i 's and b_i 's in such a way that

$$|b_n|\log^+ a_n = \max_{1 \le i \le n} |b_i|\log^+ a_i$$

Moreover, we write $\log^+ x = \max\{1, \log x\}$.

Aleksentsev, 2008 applied to the rational case (settings)

Let

- a_1, \ldots, a_n : rational integers ≥ 2 ,
- b_1, \ldots, b_n : rational integers,

and

$$\Lambda = b_1 \log a_1 + \dots + b_n \log a_n.$$

Sort a_i 's and b_i 's in such a way that

$$|b_n|\log^+ a_n = \max_{1 \le i \le n} |b_i|\log^+ a_i$$

Moreover, we write $\log^+ x = \max\{1, \log x\}$.

Aleksentsev, 2008 applied to the rational case (settings)

Let

- a_1, \ldots, a_n : rational integers ≥ 2 ,
- b_1, \ldots, b_n : rational integers,

and

$$\Lambda = b_1 \log a_1 + \dots + b_n \log a_n.$$

Sort a_i 's and b_i 's in such a way that

$$|b_n|\log^+ a_n = \max_{1 \le i \le n} |b_i|\log^+ a_i$$

Moreover, we write $\log^+ x = \max\{1, \log x\}$.

Then $\Lambda = 0$ or

$$\log |\Lambda| > -C(n) \log^+ a_1 \cdots \log^+ a_n \log B,$$

where

$$B = \max\left\{3, \max_{1 \le i \le n-1} \frac{|b_i|}{\log^+ a_n} + \frac{|b_n|}{\log^+ a_i}\right\}$$

and

$$C(n) = 5.3n(n+1)(n+5)(n+8)^2 31.44^n \frac{(n+1)^n}{n^{n+0.5}} \log(3n).$$

Then $\Lambda=0$ or

$$\log |\Lambda| > -C(n) \log^+ a_1 \cdots \log^+ a_n \log B,$$

where

$$B = \max\left\{3, \max_{1 \le i \le n-1} \frac{|b_i|}{\log^+ a_n} + \frac{|b_n|}{\log^+ a_i}\right\}$$

and

$$C(n) = 5.3n(n+1)(n+5)(n+8)^2 31.44^n \frac{(n+1)^n}{n^{n+0.5}} \log(3n).$$

Then $\Lambda=0$ or

$$\log |\Lambda| > -C(n) \log^+ a_1 \cdots \log^+ a_n \log B,$$

where

$$B = \max\left\{3, \max_{1 \le i \le n-1} \frac{|b_i|}{\log^+ a_n} + \frac{|b_n|}{\log^+ a_i}\right\}$$

and

$$C(n) = 5.3n(n+1)(n+5)(n+8)^2 31.44^n \frac{(n+1)^n}{n^{n+0.5}} \log(3n).$$

Then $\Lambda=0$ or

$$\log |\Lambda| > -C(n) \log^+ a_1 \cdots \log^+ a_n \log B,$$

where

$$B = \max\left\{3, \max_{1 \le i \le n-1} \frac{|b_i|}{\log^+ a_n} + \frac{|b_n|}{\log^+ a_i}\right\}$$

and

$$C(n) = 5.3n(n+1)(n+5)(n+8)^2 31.44^n \frac{(n+1)^n}{n^{n+0.5}} \log(3n).$$

Then $\Lambda=0$ or

$$\log |\Lambda| > -C(n) \log^+ a_1 \cdots \log^+ a_n \log B,$$

where

$$B = \max\left\{3, \max_{1 \le i \le n-1} \frac{|b_i|}{\log^+ a_n} + \frac{|b_n|}{\log^+ a_i}\right\}$$

and

$$C(n) = 5.3n(n+1)(n+5)(n+8)^2 31.44^n \frac{(n+1)^n}{n^{n+0.5}} \log(3n).$$

Bang's theorem

If a and n are integers ≥ 2 , then $a^n - 1$ has a prime factor dividing none of $a^m - 1$ with $1 \leq m \leq n - 1$ unless (a, n) = (2, 6) or $(a, n) = (2^k - 1, 2)$ for some integer $k \geq 2$.

Now we see that for each divisor d > 2 of s_i , $q_i^d - 1$ has a prime factor dividing none of $q_i^m - 1$ with $1 \le m \le d - 1$. Hence, we obtain

Corollary

 $\sigma(q_i^{s_i-1})$ has at least $\tau(s_i) - 1$ distinct prime factors for any odd prime q_i .

Bang's theorem

If a and n are integers ≥ 2 , then $a^n - 1$ has a prime factor dividing none of $a^m - 1$ with $1 \leq m \leq n - 1$ unless (a, n) = (2, 6) or $(a, n) = (2^k - 1, 2)$ for some integer $k \geq 2$.

Now we see that for each divisor d > 2 of s_i , $q_i^d - 1$ has a prime factor dividing none of $q_i^m - 1$ with $1 \le m \le d - 1$. Hence, we obtain

Corollary

 $\sigma(q_i^{s_i-1})$ has at least $\tau(s_i) - 1$ distinct prime factors for any odd prime q_i .

Bang's theorem

If a and n are integers ≥ 2 , then $a^n - 1$ has a prime factor dividing none of $a^m - 1$ with $1 \leq m \leq n - 1$ unless (a, n) = (2, 6) or $(a, n) = (2^k - 1, 2)$ for some integer $k \geq 2$.

Now we see that for each divisor d > 2 of s_i , $q_i^d - 1$ has a prime factor dividing none of $q_i^m - 1$ with $1 \le m \le d - 1$. Hence, we obtain

Corollary

 $\sigma(q_i^{s_i-1})$ has at least $\tau(s_i) - 1$ distinct prime factors for any odd prime q_i .

Bang's theorem

If a and n are integers ≥ 2 , then $a^n - 1$ has a prime factor dividing none of $a^m - 1$ with $1 \leq m \leq n - 1$ unless (a, n) = (2, 6) or $(a, n) = (2^k - 1, 2)$ for some integer $k \geq 2$.

Now we see that for each divisor d > 2 of s_i , $q_i^d - 1$ has a prime factor dividing none of $q_i^m - 1$ with $1 \le m \le d - 1$. Hence, we obtain

Corollary

 $\sigma(q_i^{s_i-1})$ has at least $\tau(s_i) - 1$ distinct prime factors for any odd prime q_i .

Bang's theorem

If a and n are integers ≥ 2 , then $a^n - 1$ has a prime factor dividing none of $a^m - 1$ with $1 \leq m \leq n - 1$ unless (a, n) = (2, 6) or $(a, n) = (2^k - 1, 2)$ for some integer $k \geq 2$.

Now we see that for each divisor d > 2 of s_i , $q_i^d - 1$ has a prime factor dividing none of $q_i^m - 1$ with $1 \le m \le d - 1$. Hence, we obtain

Corollary

 $\sigma(q_i^{s_i-1})$ has at least $\tau(s_i) - 1$ distinct prime factors for any odd prime q_i .

We also use the following classical result.

Bang's theorem

If a and n are integers ≥ 2 , then $a^n - 1$ has a prime factor dividing none of $a^m - 1$ with $1 \leq m \leq n - 1$ unless (a, n) = (2, 6) or $(a, n) = (2^k - 1, 2)$ for some integer $k \geq 2$.

Now we see that for each divisor d > 2 of s_i , $q_i^d - 1$ has a prime factor dividing none of $q_i^m - 1$ with $1 \le m \le d - 1$. Hence, we obtain

Corollary

 $\sigma(q_i^{s_i-1})$ has at least $\tau(s_i) - 1$ distinct prime factors for any odd prime q_i .

We also use the following classical result.

Bang's theorem

If a and n are integers ≥ 2 , then $a^n - 1$ has a prime factor dividing none of $a^m - 1$ with $1 \leq m \leq n - 1$ unless (a, n) = (2, 6) or $(a, n) = (2^k - 1, 2)$ for some integer $k \geq 2$.

Now we see that for each divisor d > 2 of s_i , $q_i^d - 1$ has a prime factor dividing none of $q_i^m - 1$ with $1 \le m \le d - 1$. Hence, we obtain

Corollary

 $\sigma(q_i^{s_i-1})$ has at least $\tau(s_i) - 1$ distinct prime factors for any odd prime q_i .

We begin with

$$p^{g_i} = \frac{q_i^{s_i} - 1}{q_i - 1}.$$

From the above Corollary of Bang's theorem, we see that s_i must be a prime factor of p-1.

We begin with

$$p^{g_i} = \frac{q_i^{s_i} - 1}{q_i - 1}.$$

From the above Corollary of Bang's theorem, we see that s_i must be a prime factor of p-1.

We begin with

$$p^{g_i} = \frac{q_i^{s_i} - 1}{q_i - 1}.$$

From the above Corollary of Bang's theorem, we see that s_i must be a prime factor of p - 1.

We begin with

$$p^{g_i} = \frac{q_i^{s_i} - 1}{q_i - 1}.$$

From the above Corollary of Bang's theorem, we see that s_i must be a prime factor of p - 1.

$$T_k = \{q_i : s_i = k\} = \{q_i : f_i = k - 1\}.$$

We note that k must be a prime factor of p-1 whenever T_k is not empty. Hence,

$$\frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

$$T_k = \{q_i : s_i = k\} = \{q_i : f_i = k - 1\}.$$

We note that k must be a prime factor of p-1 whenever T_k is not empty. Hence,

$$\frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

$$T_k = \{q_i : s_i = k\} = \{q_i : f_i = k - 1\}.$$

We note that k must be a prime factor of p-1 whenever T_k is not empty.

Hence,

$$\frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

$$T_k = \{q_i : s_i = k\} = \{q_i : f_i = k - 1\}.$$

We note that k must be a prime factor of p-1 whenever T_k is not empty. Hence,

$$\frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

If $q_i < q_j$ both belong to T_k , then $q_j > q_i^{k-1}$.

Since $q_j > q_i$,

$$p^{g_j} = \frac{q_j^k - 1}{q_j - 1} > \frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

and $g_j > g_i$. Hence,

$$\frac{q_j^k - 1}{q_j - 1} \equiv \frac{q_i^k - 1}{q_i - 1} \equiv 0 \pmod{p^{g_i}}.$$

If $q_i < q_j$ both belong to T_k , then $q_j > q_i^{k-1}$.

Since $q_j > q_i$,

$$p^{g_j} = \frac{q_j^k - 1}{q_j - 1} > \frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

and $g_j > g_i$. Hence,

$$\frac{q_j^k - 1}{q_j - 1} \equiv \frac{q_i^k - 1}{q_i - 1} \equiv 0 \pmod{p^{g_i}}.$$

If $q_i < q_j$ both belong to T_k , then $q_j > q_i^{k-1}$.

Since $q_j > q_i$,

$$p^{g_j} = \frac{q_j^k - 1}{q_j - 1} > \frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

and $g_j > g_i$. Hence,

$$\frac{q_j^k - 1}{q_j - 1} \equiv \frac{q_i^k - 1}{q_i - 1} \equiv 0 \pmod{p^{g_i}}.$$

If $q_i < q_j$ both belong to T_k , then $q_j > q_i^{k-1}$.

Since $q_j > q_i$,

$$p^{g_j} = \frac{q_j^k - 1}{q_j - 1} > \frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

and $g_j > g_i$. Hence,

$$\frac{q_j^k-1}{q_j-1} \equiv \frac{q_i^k-1}{q_i-1} \equiv 0 \pmod{p^{g_i}}$$

If $q_i < q_j$ both belong to T_k , then $q_j > q_i^{k-1}$.

Since $q_j > q_i$,

$$p^{g_j} = \frac{q_j^k - 1}{q_j - 1} > \frac{q_i^k - 1}{q_i - 1} = p^{g_i}$$

and $g_j > g_i$. Hence,

$$\frac{q_j^k - 1}{q_j - 1} \equiv \frac{q_i^k - 1}{q_i - 1} \equiv 0 \pmod{p^{g_i}}.$$

Since every
$$X = q_i, q_i^2, \ldots, q_i^{k-1}$$
 satisfies

$$\frac{X^k - 1}{X - 1} \equiv 0 \pmod{p^{g_i}} \tag{8}$$

and

$$q_i < q_i^2 < \dots < q_i^{k-1} < \frac{q_i^k - 1}{q_i - 1} = p^{g_i},$$

 $X = q_i, q_i^2, \dots, q_i^{k-1}$ give all solutions to (8) with $0 \le X < p^{g_i}$. Hence, $q_j \equiv q_i^t \pmod{p^{g_i}}$ for some t with $1 \le t \le k-1$. We can easily see that $q_j \ne q_i^t$ and therefore $q_j > p^{g_i} > q_i^{k-1}$.

Since every
$$X = q_i, q_i^2, \ldots, q_i^{k-1}$$
 satisfies

$$\frac{X^k - 1}{X - 1} \equiv 0 \pmod{p^{g_i}} \tag{8}$$

and

$$q_i < q_i^2 < \dots < q_i^{k-1} < \frac{q_i^k - 1}{q_i - 1} = p^{g_i},$$

 $X = q_i, q_i^2, \dots, q_i^{k-1}$ give all solutions to (8) with $0 \le X < p^{g_i}$. Hence, $q_j \equiv q_i^t \pmod{p^{g_i}}$ for some t with $1 \le t \le k-1$. We can easily see that $q_j \ne q_i^t$ and therefore $q_j > p^{g_i} > q_i^{k-1}$.

Since every $X = q_i, q_i^2, \ldots, q_i^{k-1}$ satisfies

$$\frac{X^k - 1}{X - 1} \equiv 0 \pmod{p^{g_i}} \tag{8}$$

and

$$q_i < q_i^2 < \dots < q_i^{k-1} < \frac{q_i^k - 1}{q_i - 1} = p^{g_i},$$

 $X = q_i, q_i^2, \dots, q_i^{k-1}$ give all solutions to (8) with $0 \le X < p^{g_i}$. Hence, $q_j \equiv q_i^t \pmod{p^{g_i}}$ for some t with $1 \le t \le k-1$. We can easily see that $q_j \ne q_i^t$ and therefore $q_j > p^{g_i} > q_i^{k-1}$. Since every $X = q_i, q_i^2, \ldots, q_i^{k-1}$ satisfies

$$\frac{X^k - 1}{X - 1} \equiv 0 \pmod{p^{g_i}} \tag{8}$$

and

$$q_i < q_i^2 < \dots < q_i^{k-1} < \frac{q_i^k - 1}{q_i - 1} = p^{g_i},$$

 $X = q_i, q_i^2, \dots, q_i^{k-1}$ give all solutions to (8) with $0 \le X < p^{g_i}$. Hence, $q_j \equiv q_i^t \pmod{p^{g_i}}$ for some t with $1 \le t \le k-1$. We can easily see that $q_j \ne q_i^t$ and therefore $q_j > p^{g_i} > q_i^{k-1}$. Since every $X = q_i, q_i^2, \dots, q_i^{k-1}$ satisfies

$$\frac{X^k - 1}{X - 1} \equiv 0 \pmod{p^{g_i}} \tag{8}$$

and

$$q_i < q_i^2 < \dots < q_i^{k-1} < \frac{q_i^k - 1}{q_i - 1} = p^{g_i},$$

 $X = q_i, q_i^2, \ldots, q_i^{k-1}$ give all solutions to (8) with $0 \le X < p^{g_i}$. Hence, $q_j \equiv q_i^t \pmod{p^{g_i}}$ for some t with $1 \le t \le k-1$. We can easily see that $q_j \ne q_i^t$ and therefore $q_j > p^{g_i} > q_i^{k-1}$. Since every $X = q_i, q_i^2, \dots, q_i^{k-1}$ satisfies

$$\frac{X^k - 1}{X - 1} \equiv 0 \pmod{p^{g_i}} \tag{8}$$

and

$$q_i < q_i^2 < \dots < q_i^{k-1} < \frac{q_i^k - 1}{q_i - 1} = p^{q_i},$$

 $X = q_i, q_i^2, \ldots, q_i^{k-1}$ give all solutions to (8) with $0 \le X < p^{g_i}$. Hence, $q_j \equiv q_i^t \pmod{p^{g_i}}$ for some t with $1 \le t \le k-1$. We can easily see that $q_j \ne q_i^t$ and therefore $q_j > p^{g_i} > q_i^{k-1}$.

For each q_i , we have

$$s_i < 6.33797 \times 10^9 \log p \log q_i (22.4731 + \log \log p)$$

and

 $g_i < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p).$

The three logarithmic form

$$\Lambda_i = s_i \log q_i - \log(q_i - 1) - g_i \log p$$

satisfies

$$0 < \Lambda_i = \log \frac{q_i^{s_i}}{q_i^{s_i} - 1} < \frac{1}{q_i^{s_i} - 1}.$$

For each q_i , we have

$s_i < 6.33797 \times 10^9 \log p \log q_i (22.4731 + \log \log p)$

and

 $g_i < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p).$

The three logarithmic form

$$\Lambda_i = s_i \log q_i - \log(q_i - 1) - g_i \log p$$

satisfies

$$0 < \Lambda_i = \log \frac{q_i^{s_i}}{q_i^{s_i} - 1} < \frac{1}{q_i^{s_i} - 1}.$$

For each q_i , we have

$$s_i < 6.33797 \times 10^9 \log p \log q_i (22.4731 + \log \log p)$$

and

 $g_i < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p).$

The three logarithmic form

$$\Lambda_i = s_i \log q_i - \log(q_i - 1) - g_i \log p$$

satisfies

$$0 < \Lambda_i = \log \frac{q_i^{s_i}}{q_i^{s_i} - 1} < \frac{1}{q_i^{s_i} - 1}.$$

For each q_i , we have

$$s_i < 6.33797 \times 10^9 \log p \log q_i (22.4731 + \log \log p)$$

and

$$g_i < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p).$$

The three logarithmic form

$$\Lambda_i = s_i \log q_i - \log(q_i - 1) - g_i \log p$$

satisfies

$$0 < \Lambda_i = \log \frac{q_i^{s_i}}{q_i^{s_i} - 1} < \frac{1}{q_i^{s_i} - 1}.$$

For each q_i , we have

$$s_i < 6.33797 \times 10^9 \log p \log q_i (22.4731 + \log \log p)$$

and

$$g_i < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p).$$

The three logarithmic form

$$\Lambda_i = s_i \log q_i - \log(q_i - 1) - g_i \log p$$

satisfies

$$0 < \Lambda_i = \log \frac{q_i^{s_i}}{q_i^{s_i} - 1} < \frac{1}{q_i^{s_i} - 1}.$$

For each q_i , we have

 $s_i < 6.33797 \times 10^9 \log p \log q_i (22.4731 + \log \log p)$

and

 $g_i < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p).$

The three logarithmic form

$$\Lambda_i = s_i \log q_i - \log(q_i - 1) - g_i \log p$$

satisfies

$$0 < \Lambda_i = \log \frac{q_i^{s_i}}{q_i^{s_i} - 1} < \frac{1}{q_i^{s_i} - 1}.$$

By Aleksentsev's bound, we have

 $\log(q_i^{s_i} - 1) = -\log \Lambda_i < C_0(3) \log q_i \log(q_i - 1) \log p \log B_0,$

where

$$B_0 = \max\left\{\frac{s_i}{\log p} + \frac{g_i}{\log q_i}, \frac{s_i}{\log(q_i - 1)} + \frac{g_i}{\log q_i}\right\}.$$

By Aleksentsev's bound, we have

$$\log(q_i^{s_i} - 1) = -\log \Lambda_i < C_0(3) \log q_i \log(q_i - 1) \log p \log B_0,$$

where

$$B_0 = \max\left\{\frac{s_i}{\log p} + \frac{g_i}{\log q_i}, \frac{s_i}{\log(q_i - 1)} + \frac{g_i}{\log q_i}\right\}.$$

By Aleksentsev's bound, we have

$$\log(q_i^{s_i} - 1) = -\log \Lambda_i < C_0(3) \log q_i \log(q_i - 1) \log p \log B_0,$$

where

$$B_0 = \max\left\{\frac{s_i}{\log p} + \frac{g_i}{\log q_i}, \frac{s_i}{\log(q_i - 1)} + \frac{g_i}{\log q_i}\right\}.$$

From this, we can deduce

$s_i < 6.33797 \times 10^9 \log p \log q (22.4731 + \log \log p)$

and

$$g_i < \frac{s_i \log q_i}{\log p} < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p)$$

as desired.

From this, we can deduce

$s_i < 6.33797 \times 10^9 \log p \log q (22.4731 + \log \log p)$

and

$$g_i < \frac{s_i \log q_i}{\log p} < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p)$$

as desired.

From this, we can deduce

 $s_i < 6.33797 \times 10^9 \log p \log q (22.4731 + \log \log p)$

and

$$g_i < \frac{s_i \log q_i}{\log p} < 6.33797 \times 10^9 \log^2 q(22.4731 + \log \log p)$$

as desired.

 $\log p < \log(1.2676 \times 10^9 (22.4731 + \log \log p) \log^2 q_2) + C(4) \log^2 q_1 \log^2 q_2 \log B_1,$

where

 $B_1 = 8.13571 \times 10^{19} \log^2 q_2 \log p (22.4731 + \log \log p)^2.$

Clearly we have

$$\left(\frac{q_2^{s_2}-1}{q_2-1}\right)^{g_1} = \left(\frac{q_1^{s_1}-1}{q_1-1}\right)^{g_2}.$$

$$\log p < \log(1.2676 \times 10^9 (22.4731 + \log \log p) \log^2 q_2) + C(4) \log^2 q_1 \log^2 q_2 \log B_1,$$

where

 $B_1 = 8.13571 \times 10^{19} \log^2 q_2 \log p (22.4731 + \log \log p)^2.$

Clearly we have

$$\left(\frac{q_2^{s_2}-1}{q_2-1}\right)^{g_1} = \left(\frac{q_1^{s_1}-1}{q_1-1}\right)^{g_2}.$$

$$\log p < \log(1.2676 \times 10^9 (22.4731 + \log \log p) \log^2 q_2) + C(4) \log^2 q_1 \log^2 q_2 \log B_1,$$

where

$$B_1 = 8.13571 \times 10^{19} \log^2 q_2 \log p (22.4731 + \log \log p)^2.$$

Clearly we have

$$\left(\frac{q_2^{s_2}-1}{q_2-1}\right)^{g_1} = \left(\frac{q_1^{s_1}-1}{q_1-1}\right)^{g_2}$$

Lemma 3

$$\log p < \log(1.2676 \times 10^9 (22.4731 + \log \log p) \log^2 q_2) + C(4) \log^2 q_1 \log^2 q_2 \log B_1,$$

where

$$B_1 = 8.13571 \times 10^{19} \log^2 q_2 \log p (22.4731 + \log \log p)^2.$$

Clearly we have

$$\left(\frac{q_2^{s_2}-1}{q_2-1}\right)^{g_1} = \left(\frac{q_1^{s_1}-1}{q_1-1}\right)^{g_2}.$$

$$g_1\left(s_2\log q_2 - \log(q_2 - 1) - \log\frac{q_2^{s_2}}{q_2^{s_2} - 1}\right)$$
$$= g_2\left(s_1\log q_1 - \log(q_1 - 1) - \log\frac{q_1^{s_1}}{q_1^{s_1} - 1}\right)$$

and, putting

$$\Lambda = g_1 s_2 \log q_2 - g_1 \log(q_2 - 1) - g_2 s_1 \log q_1 + g_2 \log(q_1 - 1),$$

we have

$$0 < |\Lambda| < \frac{g_1}{q_2^{s_2} - 1} + \frac{g_2}{q_1^{s_1} - 1} < \frac{g_1 + g_2}{p}$$

where we note that $\Lambda \neq 0$ since $g_1 s_2 \neq 0$.

$$g_1\left(s_2\log q_2 - \log(q_2 - 1) - \log\frac{q_2^{s_2}}{q_2^{s_2} - 1}\right)$$
$$= g_2\left(s_1\log q_1 - \log(q_1 - 1) - \log\frac{q_1^{s_1}}{q_1^{s_1} - 1}\right)$$

and, putting

$$\Lambda = g_1 s_2 \log q_2 - g_1 \log(q_2 - 1) - g_2 s_1 \log q_1 + g_2 \log(q_1 - 1),$$

we have

$$0 < |\Lambda| < \frac{g_1}{q_2^{s_2} - 1} + \frac{g_2}{q_1^{s_1} - 1} < \frac{g_1 + g_2}{p}$$

where we note that $\Lambda \neq 0$ since $g_1 s_2 \neq 0$.

$$g_1\left(s_2\log q_2 - \log(q_2 - 1) - \log\frac{q_2^{s_2}}{q_2^{s_2} - 1}\right)$$
$$= g_2\left(s_1\log q_1 - \log(q_1 - 1) - \log\frac{q_1^{s_1}}{q_1^{s_1} - 1}\right)$$

and, putting

$$\Lambda = g_1 s_2 \log q_2 - g_1 \log(q_2 - 1) - g_2 s_1 \log q_1 + g_2 \log(q_1 - 1),$$

we have

$$0 < |\Lambda| < \frac{g_1}{q_2^{s_2} - 1} + \frac{g_2}{q_1^{s_1} - 1} < \frac{g_1 + g_2}{p}$$

where we note that $\Lambda \neq 0$ since $g_1 s_2 \neq 0$.

$$g_1\left(s_2\log q_2 - \log(q_2 - 1) - \log\frac{q_2^{s_2}}{q_2^{s_2} - 1}\right)$$
$$= g_2\left(s_1\log q_1 - \log(q_1 - 1) - \log\frac{q_1^{s_1}}{q_1^{s_1} - 1}\right)$$

and, putting

$$\Lambda = g_1 s_2 \log q_2 - g_1 \log(q_2 - 1) - g_2 s_1 \log q_1 + g_2 \log(q_1 - 1),$$

we have

$$0 < |\Lambda| < \frac{g_1}{q_2^{s_2} - 1} + \frac{g_2}{q_1^{s_1} - 1} < \frac{g_1 + g_2}{p},$$

where we note that $\Lambda \neq 0$ since $g_1 s_2 \neq 0$.

$$g_1\left(s_2\log q_2 - \log(q_2 - 1) - \log\frac{q_2^{s_2}}{q_2^{s_2} - 1}\right)$$
$$= g_2\left(s_1\log q_1 - \log(q_1 - 1) - \log\frac{q_1^{s_1}}{q_1^{s_1} - 1}\right)$$

and, putting

$$\Lambda = g_1 s_2 \log q_2 - g_1 \log(q_2 - 1) - g_2 s_1 \log q_1 + g_2 \log(q_1 - 1),$$

we have

$$0 < |\Lambda| < \frac{g_1}{q_2^{s_2} - 1} + \frac{g_2}{q_1^{s_1} - 1} < \frac{g_1 + g_2}{p},$$

where we note that $\Lambda \neq 0$ since $g_1 s_2 \neq 0$.

 $g_i < 6.33797 \times 10^9 \log^2 q_i (22.4731 + \log \log p)$

and

$$0 < |\Lambda| < \frac{1.2676 \times 10^9 (22.4731 + \log \log p) \log^2 q_2}{p}$$

Now we obtain

 $-\log|\Lambda| < C(4)\log q_1\log(q_1-1)\log q_2\log(q_2-1)\log B_1.$

and the Lemma follows.

$g_i < 6.33797 \times 10^9 \log^2 q_i (22.4731 + \log \log p)$

and

$$0 < |\Lambda| < \frac{1.2676 \times 10^9 (22.4731 + \log \log p) \log^2 q_2}{p}$$

Now we obtain

 $-\log|\Lambda| < C(4)\log q_1\log(q_1-1)\log q_2\log(q_2-1)\log B_1.$

and the Lemma follows.

$$g_i < 6.33797 \times 10^9 \log^2 q_i (22.4731 + \log \log p)$$

and
$$0 < |\Lambda| < \frac{1.2676 \times 10^9 (22.4731 + \log\log p) \log^2 q_2}{p}.$$

Now we obtain

 $-\log|\Lambda| < C(4)\log q_1\log(q_1-1)\log q_2\log(q_2-1)\log B_1.$

and the Lemma follows.

$$g_i < 6.33797 \times 10^9 \log^2 q_i (22.4731 + \log \log p)$$

and

$$0 < |\Lambda| < \frac{1.2676 \times 10^9 (22.4731 + \log \log p) \log^2 q_2}{p}.$$

Now we obtain

 $-\log|\Lambda| < C(4)\log q_1\log(q_1-1)\log q_2\log(q_2-1)\log B_1.$

and the Lemma follows.

$$g_i < 6.33797 \times 10^9 \log^2 q_i (22.4731 + \log \log p)$$

and

$$0 < |\Lambda| < \frac{1.2676 \times 10^9 (22.4731 + \log \log p) \log^2 q_2}{p}.$$

Now we obtain

 $-\log|\Lambda| < C(4)\log q_1\log(q_1-1)\log q_2\log(q_2-1)\log B_1.$

and the Lemma follows.

Proof of main results

We begin by Theorem 1. If p = 2, then $q_i^{f_i}$ must be a Mersenne prime and

$$\frac{\sigma(N)}{N} < \prod_{2^{\ell} - 1: \text{prime}} \frac{2^{\ell}}{2^{\ell} - 1} = 1.58555888 \cdots$$

Proof of main results

We begin by Theorem 1. If p = 2, then $q_i^{f_i}$ must be a Mersenne prime and

$$\frac{\sigma(N)}{N} < \prod_{2^{\ell} - 1: \text{prime}} \frac{2^{\ell}}{2^{\ell} - 1} = 1.58555888 \cdots$$

Proof of main results

We begin by Theorem 1. If p = 2, then $q_i^{f_i}$ must be a Mersenne prime and

$$\frac{\sigma(N)}{N} < \prod_{2^{\ell} - 1: \text{prime}} \frac{2^{\ell}}{2^{\ell} - 1} = 1.58555888 \cdots$$

 $q_2 > \log^{0.2787} p$

and, using Rosser-Schoenfeld inequality, we have

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.61,$$

 $q_2 > \log^{0.2787} p$

and, using Rosser-Schoenfeld inequality, we have

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.61,$$

$$q_2 > \log^{0.2787} p$$

and, using Rosser-Schoenfeld inequality, we have

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.61,$$

 $q_2 > \log^{0.2787} p$

and, using Rosser-Schoenfeld inequality, we have

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.61,$$

$$q_2 > \log^{0.2787} p$$

and, using Rosser-Schoenfeld inequality, we have

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.61,$$

$$q_2 > \log^{0.2787} p$$

and, using Rosser-Schoenfeld inequality, we have

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.61,$$

$$\prod_{q_i > \log p, q_i \in T_k} \frac{q_i}{q_i - 1} \le \prod_j \frac{p_k^{(k-1)^j}}{p_k^{(k-1)^j} - 1} < 1 + \frac{1 + 10^{-8}}{p_k}.$$

We note that $\omega(p-1) < 1.38402 \log p / \log \log p$ (Robin, 1983) and

$$\prod_{q_i > \log p} \frac{q_i}{q_i - 1} < \left(1 + \frac{1}{\log p}\right)^{1.38402 \log p / \log \log p} < 1.035.$$

Hence, we have

$$\prod_{i\geq 2}\frac{q_i}{q_i-1}<3.737.$$

$$\prod_{q_i > \log p, q_i \in T_k} \frac{q_i}{q_i - 1} \le \prod_j \frac{p_k^{(k-1)^j}}{p_k^{(k-1)^j} - 1} < 1 + \frac{1 + 10^{-8}}{p_k}.$$

We note that $\omega(p-1) < 1.38402 \log p / \log \log p$ (Robin, 1983) and

$$\prod_{q_i > \log p} \frac{q_i}{q_i - 1} < \left(1 + \frac{1}{\log p}\right)^{1.38402 \log p / \log \log p} < 1.035.$$

Hence, we have

$$\prod_{i\geq 2}\frac{q_i}{q_i-1}<3.737.$$

$$\prod_{q_i > \log p, q_i \in T_k} \frac{q_i}{q_i - 1} \le \prod_j \frac{p_k^{(k-1)^j}}{p_k^{(k-1)^j} - 1} < 1 + \frac{1 + 10^{-8}}{p_k}.$$

We note that $\omega(p-1) < 1.38402 \log p / \log \log p$ (Robin, 1983) and

$$\prod_{q_i > \log p} \frac{q_i}{q_i - 1} < \left(1 + \frac{1}{\log p}\right)^{1.38402 \log p / \log \log p} < 1.035.$$

Hence, we have

$$\prod_{i\geq 2}\frac{q_i}{q_i-1}<3.737.$$

$$\prod_{q_i > \log p, q_i \in T_k} \frac{q_i}{q_i - 1} \le \prod_j \frac{p_k^{(k-1)^j}}{p_k^{(k-1)^j} - 1} < 1 + \frac{1 + 10^{-8}}{p_k}.$$

We note that $\omega(p-1) < 1.38402 \log p / \log \log p$ (Robin, 1983) and

$$\prod_{q_i > \log p} \frac{q_i}{q_i - 1} < \left(1 + \frac{1}{\log p}\right)^{1.38402 \log p / \log \log p} < 1.035.$$

Hence, we have

$$\prod_{i\geq 2}\frac{q_i}{q_i-1}<3.737.$$

$$\prod_{q_i > \log p, q_i \in T_k} \frac{q_i}{q_i - 1} \le \prod_j \frac{p_k^{(k-1)^j}}{p_k^{(k-1)^j} - 1} < 1 + \frac{1 + 10^{-8}}{p_k}.$$

We note that $\omega(p-1) < 1.38402 \log p / \log \log p$ (Robin, 1983) and

$$\prod_{q_i > \log p} \frac{q_i}{q_i - 1} < \left(1 + \frac{1}{\log p}\right)^{1.38402 \log p / \log \log p} < 1.035.$$

Hence, we have

$$\prod_{i\geq 2}\frac{q_i}{q_i-1}<3.737.$$

$$\prod_{q_i > \log p, q_i \in T_k} \frac{q_i}{q_i - 1} \le \prod_j \frac{p_k^{(k-1)^j}}{p_k^{(k-1)^j} - 1} < 1 + \frac{1 + 10^{-8}}{p_k}.$$

We note that $\omega(p-1) < 1.38402\log p/\log\log p$ (Robin, 1983) and

$$\prod_{q_i > \log p} \frac{q_i}{q_i - 1} < \left(1 + \frac{1}{\log p}\right)^{1.38402 \log p / \log \log p} < 1.035.$$

Hence, we have

$$\prod_{i\geq 2}\frac{q_i}{q_i-1}<3.737.$$

$$\prod_{q_i > \log p, q_i \in T_k} \frac{q_i}{q_i - 1} \le \prod_j \frac{p_k^{(k-1)^j}}{p_k^{(k-1)^j} - 1} < 1 + \frac{1 + 10^{-8}}{p_k}.$$

We note that $\omega(p-1) < 1.38402 \log p / \log \log p$ (Robin, 1983) and

$$\prod_{q_i > \log p} \frac{q_i}{q_i - 1} < \left(1 + \frac{1}{\log p}\right)^{1.38402 \log p / \log \log p} < 1.035.$$

Hence, we have

$$\prod_{i\geq 2}\frac{q_i}{q_i-1}<3.737.$$

$$\prod_{q_i > \log p, q_i \in T_k} \frac{q_i}{q_i - 1} \le \prod_j \frac{p_k^{(k-1)^j}}{p_k^{(k-1)^j} - 1} < 1 + \frac{1 + 10^{-8}}{p_k}.$$

We note that $\omega(p-1) < 1.38402\log p/\log\log p$ (Robin, 1983) and

$$\prod_{q_i > \log p} \frac{q_i}{q_i - 1} < \left(1 + \frac{1}{\log p}\right)^{1.38402 \log p / \log \log p} < 1.035.$$

Hence, we have

$$\prod_{i \ge 2} \frac{q_i}{q_i - 1} < 3.737.$$

$$\begin{split} \prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} &< \prod_{10^5 < q < \log p} \frac{q}{q - 1} \\ &< \frac{\log \log p}{10 \log 5} \left(1 + \frac{1}{2 \log^2(10^5)} \right) \left(1 + \frac{1}{2(\log \log p)^2} \right) \end{split}$$

and, like above,

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < \frac{\log\log p}{10\log 5} \left(1 + \frac{1}{2\log^2(10^5)} \right) \left(1 + \frac{1}{2(\log\log p)^2} \right) \\ \left(1 + \frac{1}{\log p} \right)^{1.38402\log p/\log\log p} < 3.711.$$

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < \prod_{10^5 < q < \log p} \frac{q}{q - 1} < \frac{\log \log p}{10 \log 5} \left(1 + \frac{1}{2 \log^2(10^5)} \right) \left(1 + \frac{1}{2(\log \log p)^2} \right)$$

and, like above,

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < \frac{\log\log p}{10\log 5} \left(1 + \frac{1}{2\log^2(10^5)} \right) \left(1 + \frac{1}{2(\log\log p)^2} \right) \\ \left(1 + \frac{1}{\log p} \right)^{1.38402\log p/\log\log p} < 3.711.$$

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < \prod_{10^5 < q < \log p} \frac{q}{q - 1} < \frac{\log \log p}{10 \log 5} \left(1 + \frac{1}{2 \log^2(10^5)} \right) \left(1 + \frac{1}{2(\log \log p)^2} \right)$$

and, like above,

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < \frac{\log\log p}{10\log 5} \left(1 + \frac{1}{2\log^2(10^5)} \right) \left(1 + \frac{1}{2(\log\log p)^2} \right) \\ \left(1 + \frac{1}{\log p} \right)^{1.38402\log p/\log\log p} < 3.711.$$

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < \prod_{10^5 < q < \log p} \frac{q}{q - 1} < \frac{\log \log p}{10 \log 5} \left(1 + \frac{1}{2 \log^2(10^5)} \right) \left(1 + \frac{1}{2(\log \log p)^2} \right)$$

and, like above,

$$\begin{split} \prod_{i\geq 2} \frac{q_i}{q_i - 1} &< \frac{\log\log p}{10\log 5} \left(1 + \frac{1}{2\log^2(10^5)} \right) \left(1 + \frac{1}{2(\log\log p)^2} \right) \\ & \left(1 + \frac{1}{\log p} \right)^{1.38402\log p/\log\log p} < 3.711. \end{split}$$

In both cases, if $q_1 \ge 17$, then

$$\frac{\sigma(N)}{N} < 3.737 \times \frac{q_1}{q_1 - 1} < 4,$$

which is more than we desired.

In both cases, if $q_1 \ge 17$, then

$$\frac{\sigma(N)}{N} < 3.737 \times \frac{q_1}{q_1 - 1} < 4,$$

which is more than we desired.

Assume that $q_1 = 3$.

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.467$$

and

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

• In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388.$$

Assume that $q_1 = 3$.

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i\geq 2, q_i<\log p} \frac{q_i}{q_i-1} < 3.467$$

and

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

• In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388.$$

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.467$$

and

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

• In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388.$$

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.467$$

and

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

• In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388.$$

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.467$$

and

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

• In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388.$$

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.467$$

and

$$\prod_{i \ge 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

• In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388.$$

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.467$$

and

$$\prod_{i \ge 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388$$

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.467$$

and

$$\prod_{i \ge 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i\geq 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388.$$

• If $p \ge \exp \exp 39.75$, then Lemma 3 gives $q_2 > \log^{0.28963} p$ and therefore

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.467$$

and

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 3.467 \times 1.036 < 3.592.$$

• If $p < \exp \exp 39.75$, then, like above,

$$\prod_{i \ge 2, q_i < \log p} \frac{q_i}{q_i - 1} < 3.592.$$

In both cases, we have

$$\frac{\sigma(N)}{N} < 3.592 \times 1.5 < 5.388.$$

Similarly, we obtain $\sigma(N)/N < 5$ for $q_1 = 5, 7, 11, 13$. This completes the proof of Theorem 1.

Similarly, we obtain $\sigma(N)/N < 5$ for $q_1 = 5, 7, 11, 13$. This completes the proof of Theorem 1.

Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with $q_2 \ge e^{45}$ from Theorem 2 to obtain

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 1.0686.$$

If $q_1 \ge 37$, then $\sigma(N)/N < 1.0686 \times 37/36 < 1.1$, proving Theorem 3. We note that if $q_1 \le 31$ and $p \ge \exp 46.7$, then we must have $\sigma(q_1^{f_1}) = p$ from BM2002.

Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with $q_2 \ge e^{45}$ from Theorem 2 to obtain

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 1.0686.$$

If $q_1 \ge 37$, then $\sigma(N)/N < 1.0686 \times 37/36 < 1.1$, proving Theorem 3. We note that if $q_1 \le 31$ and $p \ge \exp \exp 46.7$, then we must have $\sigma(q_1^{f_1}) = p$ from BM2002.

Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with $q_2 \ge e^{45}$ from Theorem 2 to obtain

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 1.0686.$$

If $q_1 \ge 37$, then $\sigma(N)/N < 1.0686 \times 37/36 < 1.1$, proving Theorem 3. We note that if $q_1 \le 31$ and $p \ge \exp \exp 46.7$, then we must have $\sigma(q_1^{f_1}) = p$ from BM2002.

Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with $q_2 \ge e^{45}$ from Theorem 2 to obtain

$$\prod_{i>2} \frac{q_i}{q_i - 1} < 1.0686.$$

If $q_1 \ge 37$, then $\sigma(N)/N < 1.0686 \times 37/36 < 1.1$, proving Theorem 3. We note that if $q_1 \le 31$ and $p \ge \exp 46.7$, then we must have $\sigma(q_1^{f_1}) = p$ from BM2002. Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with $q_2 \ge e^{45}$ from Theorem 2 to obtain

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 1.0686.$$

If $q_1 \ge 37$, then $\sigma(N)/N < 1.0686 \times 37/36 < 1.1$, proving Theorem 3. We note that if $q_1 \le 31$ and $p \ge \exp \exp 46.7$, then we must have $\sigma(q_1^{f_1}) = p$ from BM2002. Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with $q_2 \ge e^{45}$ from Theorem 2 to obtain

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 1.0686.$$

If $q_1 \ge 37$, then $\sigma(N)/N < 1.0686 \times 37/36 < 1.1$, proving Theorem 3. We note that if $q_1 \le 31$ and $p \ge \exp \exp 46.7$, then we must have $\sigma(q_1^{f_1}) = p$ from BM2002. Theorem 2 is a straightforward application of Lemma 3.

For Theorem 3, we proceed like in the proof of Theorem 1 with $q_2 \ge e^{45}$ from Theorem 2 to obtain

$$\prod_{i\geq 2} \frac{q_i}{q_i - 1} < 1.0686.$$

If $q_1 \ge 37$, then $\sigma(N)/N < 1.0686 \times 37/36 < 1.1$, proving Theorem 3. We note that if $q_1 \le 31$ and $p \ge \exp \exp 46.7$, then we must have $\sigma(q_1^{f_1}) = p$ from BM2002.

- (1) For every integer $k \ge 0$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma(N)) = 2N$ not of the form 2^{p-1} ?
- (II) For every integer $k \ge 0$ and $\ell \ge 1$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma^{(\ell)}(N)) = 2N$?

- (1) For every integer $k \ge 0$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma(N)) = 2N$ not of the form 2^{p-1} ?
- (II) For every integer $k \ge 0$ and $\ell \ge 1$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma^{(\ell)}(N)) = 2N$?

- (1) For every integer $k \ge 0$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma(N)) = 2N$ not of the form 2^{p-1} ?
- (II) For every integer $k \ge 0$ and $\ell \ge 1$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma^{(\ell)}(N)) = 2N$?

- (1) For every integer $k \ge 0$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma(N)) = 2N$ not of the form 2^{p-1} ?
- (II) For every integer $k \ge 0$ and $\ell \ge 1$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma^{(\ell)}(N)) = 2N$?

- (1) For every integer $k \ge 0$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma(N)) = 2N$ not of the form 2^{p-1} ?
- (II) For every integer $k \ge 0$ and $\ell \ge 1$, are there only finitely many integers N satisfying $\sigma^{(k)}(\sigma^{(\ell)}(N)) = 2N$?

Yu. M. Aleksentsev, 2008:

Yu. M. Aleksentsev, The Hilbert polynomial and linear forms in the logarithms of algebraic numbers, Izv. RAN: Ser. Mat. **72:6** (2008), 5–52 = Izv. Math. **72:6** (2008), 1063-1110.

Bang, 1886:

A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. **5 IV** (1886), 70–80 and 130–137.

Bennett, Garbuz, and Marten, 2020: Michael A. Bennett, Ben Garbuz, and Adam Marten, Goormaghtigh's equation: small parameters, Publ. Math. Debrecen **96** (2020), 91–110.

Yu. M. Aleksentsev, 2008:

Yu. M. Aleksentsev, The Hilbert polynomial and linear forms in the logarithms of algebraic numbers, lzv. RAN: Ser. Mat. **72:6** (2008), 5–52 = lzv. Math. **72:6** (2008), 1063-1110.

Bang, 1886:

A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. **5 IV** (1886), 70–80 and 130–137.

Bennett, Garbuz, and Marten, 2020: Michael A. Bennett, Ben Garbuz, and Adam Marten, Goormaghtigh's equation: small parameters, Publ. Math. Debrecen **96** (2020), 91–110.

Yu. M. Aleksentsev, 2008:

Yu. M. Aleksentsev, The Hilbert polynomial and linear forms in the logarithms of algebraic numbers, lzv. RAN: Ser. Mat. **72:6** (2008), 5–52 = lzv. Math. **72:6** (2008), 1063-1110.

Bang, 1886:

A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. **5 IV** (1886), 70–80 and 130–137.

Bennett, Garbuz, and Marten, 2020: Michael A. Bennett, Ben Garbuz, and Adam Marten, Goormaghtigh's equation: small parameters, Publ. Math. Debrecen **96** (2020), 91–110.

Yu. M. Aleksentsev, 2008:

Yu. M. Aleksentsev, The Hilbert polynomial and linear forms in the logarithms of algebraic numbers, lzv. RAN: Ser. Mat. **72:6** (2008), 5–52 = lzv. Math. **72:6** (2008), 1063-1110.

Bang, 1886:

A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. **5 IV** (1886), 70–80 and 130–137.

Bennett, Garbuz, and Marten, 2020: Michael A. Bennett, Ben Garbuz, and Adam Marten, Goormaghtigh's equation: small parameters, Publ. Math. Debrecen **96** (2020), 91–110.

Yu. M. Aleksentsev, 2008:

Yu. M. Aleksentsev, The Hilbert polynomial and linear forms in the logarithms of algebraic numbers, lzv. RAN: Ser. Mat. **72:6** (2008), 5–52 = lzv. Math. **72:6** (2008), 1063-1110.

Bang, 1886:

A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. **5 IV** (1886), 70–80 and 130–137.

Bennett, Garbuz, and Marten, 2020:

Michael A. Bennett, Ben Garbuz, and Adam Marten, Goormaghtigh's equation: small parameters, Publ. Math. Debrecen **96** (2020), 91–110.

Yu. M. Aleksentsev, 2008:

Yu. M. Aleksentsev, The Hilbert polynomial and linear forms in the logarithms of algebraic numbers, lzv. RAN: Ser. Mat. **72:6** (2008), 5–52 = lzv. Math. **72:6** (2008), 1063-1110.

Bang, 1886:

A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. **5 IV** (1886), 70–80 and 130–137.

Bennett, Garbuz, and Marten, 2020: Michael A. Bennett, Ben Garbuz, and Adam Marten, Goormaghtigh's equation: small parameters, Publ. Math. Debrecen **96** (2020), 91–110.

Bugeaud and Mignotte, 2002:

Yann Bugeaud and Maurice Mignotte, On the diophantine equation $(x^n - 1)/(x - 1) = y^q$ with negative x, Number Theory for the millenium II, Proceeding of Millenial Conference on Number Theory 2000: University of Illinois at Urbana-Champaign, edited by M. A. Bennett, 2002, p.p.145–151.

Ljunggren, 1942:

W. Ljunggren, Zur theorie der Gleichung $X^2 + 1 = DY^4$, Avh. Norske, Vid. Akad. Oslo 1, No. 5 (1942).

Loxton, 1986:

J. H. Loxton, Problems involving powers of integers, Acta Arith. **46**, 113–123.

Bugeaud and Mignotte, 2002:

Yann Bugeaud and Maurice Mignotte, On the diophantine equation $(x^n - 1)/(x - 1) = y^q$ with negative x, Number Theory for the millenium II, Proceeding of Millenial Conference on Number Theory 2000: University of Illinois at Urbana-Champaign, edited by M. A. Bennett, 2002, p.p.145–151.

Ljunggren, 1942:

W. Ljunggren, Zur theorie der Gleichung $X^2 + 1 = DY^4$, Avh. Norske, Vid. Akad. Oslo 1, No. 5 (1942).

Loxton, 1986:

J. H. Loxton, Problems involving powers of integers, Acta Arith. **46**, 113–123.

Bugeaud and Mignotte, 2002:

Yann Bugeaud and Maurice Mignotte, On the diophantine equation $(x^n - 1)/(x - 1) = y^q$ with negative x, Number Theory for the millenium II, Proceeding of Millenial Conference on Number Theory 2000: University of Illinois at Urbana-Champaign, edited by M. A. Bennett, 2002, p.p.145–151.

Ljunggren, 1942:

W. Ljunggren, Zur theorie der Gleichung $X^2 + 1 = DY^4$, Avh. Norske, Vid. Akad. Oslo 1, No. 5 (1942).

Loxton, 1986:

J. H. Loxton, Problems involving powers of integers, Acta Arith. **46**, 113–123.

Bugeaud and Mignotte, 2002:

Yann Bugeaud and Maurice Mignotte, On the diophantine equation $(x^n - 1)/(x - 1) = y^q$ with negative x, Number Theory for the millenium II, Proceeding of Millenial Conference on Number Theory 2000: University of Illinois at Urbana-Champaign, edited by M. A. Bennett, 2002, p.p.145–151.

Ljunggren, 1942:

W. Ljunggren, Zur theorie der Gleichung $X^2 + 1 = DY^4$, Avh. Norske, Vid. Akad. Oslo 1, No. 5 (1942).

Loxton, 1986:

J. H. Loxton, Problems involving powers of integers, Acta Arith. **46**, 113–123.

Bugeaud and Mignotte, 2002:

Yann Bugeaud and Maurice Mignotte, On the diophantine equation $(x^n - 1)/(x - 1) = y^q$ with negative x, Number Theory for the millenium II, Proceeding of Millenial Conference on Number Theory 2000: University of Illinois at Urbana-Champaign, edited by M. A. Bennett, 2002, p.p.145–151.

Ljunggren, 1942:

W. Ljunggren, Zur theorie der Gleichung $X^2 + 1 = DY^4$, Avh. Norske, Vid. Akad. Oslo 1, No. 5 (1942).

Loxton, 1986:

J. H. Loxton, Problems involving powers of integers, Acta Arith. **46**, 113–123.

Bugeaud and Mignotte, 2002:

Yann Bugeaud and Maurice Mignotte, On the diophantine equation $(x^n - 1)/(x - 1) = y^q$ with negative x, Number Theory for the millenium II, Proceeding of Millenial Conference on Number Theory 2000: University of Illinois at Urbana-Champaign, edited by M. A. Bennett, 2002, p.p.145–151.

Ljunggren, 1942:

W. Ljunggren, Zur theorie der Gleichung $X^2 + 1 = DY^4$, Avh. Norske, Vid. Akad. Oslo 1, No. 5 (1942).

Loxton, 1986:

J. H. Loxton, Problems involving powers of integers, Acta Arith. 46, 113–123.

References (Lu-R)

Luca, 2011:

Florian Luca, On an equation of Goormaghtigh, Moscow J. Combin. Number Theory **1** (2011), 154–168.

Robin, 1983:

Guy Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nomre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. **42** (1983), 367–389.

Rosser and Schoenfeld, 1962:

J. B. Rosser and L. Schoenfeld, Appoximate formulas for primes, Illinois J. Math. **6** (1962), 64–94.

References (Lu-R)

Luca, 2011:

Florian Luca, On an equation of Goormaghtigh, Moscow J. Combin. Number Theory **1** (2011), 154–168.

Robin, 1983:

Guy Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nomre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. **42** (1983), 367–389.

Rosser and Schoenfeld, 1962:

J. B. Rosser and L. Schoenfeld, Appoximate formulas for primes, Illinois J. Math. **6** (1962), 64–94.

References (Lu-R)

Luca, 2011:

Florian Luca, On an equation of Goormaghtigh, Moscow J. Combin. Number Theory **1** (2011), 154–168.

Robin, 1983:

Guy Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nomre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. **42** (1983), 367–389.

Rosser and Schoenfeld, 1962:

J. B. Rosser and L. Schoenfeld, Appoximate formulas for primes, Illinois J. Math. **6** (1962), 64–94.

References (Lu-R)

Luca, 2011:

Florian Luca, On an equation of Goormaghtigh, Moscow J. Combin. Number Theory **1** (2011), 154–168.

Robin, 1983:

Guy Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nomre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. **42** (1983), 367–389.

Rosser and Schoenfeld, 1962:

J. B. Rosser and L. Schoenfeld, Appoximate formulas for primes, Illinois J. Math. **6** (1962), 64–94.

References (Lu-R)

Luca, 2011:

Florian Luca, On an equation of Goormaghtigh, Moscow J. Combin. Number Theory **1** (2011), 154–168.

Robin, 1983:

Guy Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nomre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. **42** (1983), 367–389.

Rosser and Schoenfeld, 1962:

J. B. Rosser and L. Schoenfeld, Appoximate formulas for primes, Illinois J. Math. **6** (1962), 64–94.

References (Lu-R)

Luca, 2011:

Florian Luca, On an equation of Goormaghtigh, Moscow J. Combin. Number Theory **1** (2011), 154–168.

Robin, 1983:

Guy Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nomre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. **42** (1983), 367–389.

Rosser and Schoenfeld, 1962:

J. B. Rosser and L. Schoenfeld, Appoximate formulas for primes, Illinois J. Math. **6** (1962), 64–94.

Sándor and Kovács, 2009:

József Sándor and Lehel István Kovács, On perfect numbers connected with the composition of arithmetic functions, Acta Univ. Sapi. Math. 1 (2009), 183–191.

Steiner and Tzanakis, 1991:

Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory **37** (1991), 123–132.

Størmer, 1987:

Carl Størmer, Quelques théorèmes sur l'équation de Pell $x^2 - Dy^2 = \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.

Sándor and Kovács, 2009:

József Sándor and Lehel István Kovács, On perfect numbers connected with the composition of arithmetic functions, Acta Univ. Sapi. Math. 1 (2009), 183–191.

Steiner and Tzanakis, 1991: Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory **37** (1991), 123–132.

Størmer, 1987:

Carl Størmer, Quelques théorèmes sur l'équation de Pell $x^2 - Dy^2 = \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.

Sándor and Kovács, 2009:

József Sándor and Lehel István Kovács, On perfect numbers connected with the composition of arithmetic functions, Acta Univ. Sapi. Math. **1** (2009), 183–191.

Steiner and Tzanakis, 1991:

Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory **37** (1991), 123–132.

Størmer, 1987:

Carl Størmer, Quelques théorèmes sur l'équation de Pell $x^2 - Dy^2 = \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.

Sándor and Kovács, 2009:

József Sándor and Lehel István Kovács, On perfect numbers connected with the composition of arithmetic functions, Acta Univ. Sapi. Math. **1** (2009), 183–191.

Steiner and Tzanakis, 1991:

Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory **37** (1991), 123–132.

Størmer, 1987:

Carl Størmer, Quelques théorèmes sur l'équation de Pell $x^2 - Dy^2 = \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.

Sándor and Kovács, 2009:

József Sándor and Lehel István Kovács, On perfect numbers connected with the composition of arithmetic functions, Acta Univ. Sapi. Math. **1** (2009), 183–191.

Steiner and Tzanakis, 1991:

Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory **37** (1991), 123–132.

Størmer, 1987:

Carl Størmer, Quelques théorèmes sur l'équation de Pell $x^2 - Dy^2 = \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.

Sándor and Kovács, 2009:

József Sándor and Lehel István Kovács, On perfect numbers connected with the composition of arithmetic functions, Acta Univ. Sapi. Math. **1** (2009), 183–191.

Steiner and Tzanakis, 1991:

Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory **37** (1991), 123–132.

Størmer, 1987:

Carl Størmer, Quelques théorèmes sur l'équation de Pell $x^2 - Dy^2 = \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.

Wall, 1972:

Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. **33** (1972), 39–42.

Y., 2017:

T. Y., Infinitary superperfect numbers, Ann. Math. Inform. **47** (2017), 211–218.

Y., 2018:

T. Y., 2 and 9 are the only biunitary superperfect numbers, Ann. Univ. Sci. Budapest. Sect. Comp. **48** (2018), 247– 256.

Wall, 1972:

Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. **33** (1972), 39–42.

Y., 2017:

T. Y., Infinitary superperfect numbers, Ann. Math. Inform. **47** (2017), 211–218.

Y., 2018:

T. Y., 2 and 9 are the only biunitary superperfect numbers, Ann. Univ. Sci. Budapest. Sect. Comp. **48** (2018), 247– 256.

Wall, 1972:

Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. **33** (1972), 39–42.

Y., 2017:

T. Y., Infinitary superperfect numbers, Ann. Math. Inform. **47** (2017), 211–218.

Y., 2018:

T. Y., 2 and 9 are the only biunitary superperfect numbers, Ann. Univ. Sci. Budapest. Sect. Comp. **48** (2018), 247– 256.

Wall, 1972:

Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. **33** (1972), 39–42.

Y., 2017:

T. Y., Infinitary superperfect numbers, Ann. Math. Inform. **47** (2017), 211–218.

Y., 2018:

T. Y., 2 and 9 are the only biunitary superperfect numbers, Ann. Univ. Sci. Budapest. Sect. Comp. **48** (2018), 247– 256.

Wall, 1972:

Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. **33** (1972), 39–42.

Y., 2017:

T. Y., Infinitary superperfect numbers, Ann. Math. Inform. **47** (2017), 211–218.

Y., 2018:

T. Y., 2 and 9 are the only biunitary superperfect numbers, Ann. Univ. Sci. Budapest. Sect. Comp. **48** (2018), 247– 256.

Wall, 1972:

Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. **33** (1972), 39–42.

Y., 2017:

T. Y., Infinitary superperfect numbers, Ann. Math. Inform. **47** (2017), 211–218.

Y., 2018:

T. Y., 2 and 9 are the only biunitary superperfect numbers, Ann. Univ. Sci. Budapest. Sect. Comp. **48** (2018), 247– 256.

Y., 2020 (2008):

T. Y., On finiteness of odd superperfect numbers, J. Th. Nombres Bordeaux **32** (2020), 259–274 (preprint arXiv:0803.0437).

Zsigmondy, 1882:

Y., 2020 (2008):

T. Y., On finiteness of odd superperfect numbers, J. Th. Nombres Bordeaux **32** (2020), 259–274 (preprint arXiv:0803.0437).

Zsigmondy, 1882:

Y., 2020 (2008):

T. Y., On finiteness of odd superperfect numbers, J. Th. Nombres Bordeaux **32** (2020), 259–274 (preprint arXiv:0803.0437).

Zsigmondy, 1882:

Y., 2020 (2008):

T. Y., On finiteness of odd superperfect numbers, J. Th. Nombres Bordeaux **32** (2020), 259–274 (preprint arXiv:0803.0437).

Zsigmondy, 1882:

MANY THANKS FOR YOUR ATTENTION

Tomohiro Yamada Center for Japanese language and culture Osaka University 562-8678 3-5-10, Sembahigashi, Minoo, Osaka Japan e-mail: tyamada1093@gmail.com